AI全知道-如何利用LLM来调用工具 (Call Tools)

在人工智能快速发展的今天,语言模型(LLM, Large Language Model)如GPT-4已经在多个领域展现出了强大的能力。它们不仅能生成自然语言,还能通过调用外部工具来执行复杂的任务。这篇文章将详细介绍如何利用LLM来调用工具,并通过具体的案例展示其应用。

一、什么是工具调用 (Call Tools)

工具调用是指通过语言模型生成的参数来触发外部工具的执行。这些工具可以是计算程序、数据库查询、API请求等。尽管工具调用这个名称暗示模型直接执行某些操作,但实际上,模型只是生成工具所需的参数,真正的工具执行仍然由用户或系统来完成。

案例分析

假设我们有一个需要频繁查询天气信息的应用,通过工具调用,我们可以实现如下的工作流程:

  1. 用户在聊天窗口输入查询天气的请求,例如“明天北京的天气怎么样?”。

  2. 语言模型解析用户的请求,并生成调用天气API所需的参数。

  3. 系统接收这些参数,并调用相应的API获取天气信息。

  4. 最后,将天气信息返回给用户。

二、如何设置工具调用

要利用LLM来调用工具,通常需要以下几个步骤:

  1. 定义工具接口:明确需要调用的工具及其接口。例如,如果需要查询天气信息,需要知道天气API的请求格式和参数。

  2. 训练语言模型:让模型学习如何解析用户输入并生成相应的工具调用参数。这通常通过大规模的数据训练来实现。

  3. 集成工具:将生成的参数与实际的工具接口集成,使得模型生成的参数能够触发工具的执行。

  4. 处理响应:接收工具的响应,并将结果反馈给用户。

案例:查询天气信息

我们以查询天气信息为例,来详细讲解上述步骤。

1. 定义工具接口<

### 如何在代码中实现LLM函数调用 LLM函数调用的核心在于使模型能够理解并执行特定的功能,这些功能通常由外部服务或工具提供。以下是关于如何实现这一过程的具体方法。 #### 使用LangChain框架进行异步调用 为了简化复杂的LLM应用程序开发流程,`LangChain`框架提供了高级抽象支持,使得开发者可以通过简单的接口轻松管理多个LLM调用以及与其他工具的集成[^3]。下面是一个具体的Python代码示例: ```python from langchain.llms import OpenAI from langchain.agents import initialize_agent, Tool from langchain.tools import BaseTool class DataExtractor(BaseTool): name = "data_extractor" description = "Useful for extracting data from structured inputs" def _run(self, query: str): # 假设这里有一个数据提取逻辑 return f"Extracted {query}" llm = OpenAI(temperature=0) tools = [DataExtractor()] agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True) response = agent.run("Please extract the user's information.") print(response) ``` 这段代码展示了如何创建自定义工具类 `DataExtractor` 并将其与 LangChain 集成在一起,从而实现了对结构化输入的数据提取操作。 #### 定义和调用具体函数 除了利用现有的库之外,还可以手动定义适合业务需求的函数,并通过适当的方式传递给LLM模型以便于其识别和调用。例如,在某些情况下可能需要定义像 `extract_data(name: string, birthday: string)` 这样的简单函数[^4]。以下是如何在一个假设场景下实现此类函数的一个例子: ```python def extract_data(name: str, birthday: str) -> dict: """A function to simulate extraction of personal details.""" return {"name": name, "birthday": birthday} # Assuming we have an LLM instance that supports function calls. functions = [ { "name": "extract_data", "description": "Extracts and returns a dictionary containing 'name' and 'birthday'.", "parameters": { "type": "object", "properties": { "name": {"type": "string"}, "birthday": {"type": "string"} }, "required": ["name", "birthday"] } } ] prompt = """ You are now able to call functions based on your understanding of the input text. Input Text: The person is named John Doe born on January 1st, 2000. Action: Call the appropriate function with parameters derived from the Input Text. """ function_call_result = some_llm_instance(prompt=prompt, functions=functions).execute() if isinstance(function_call_result, dict): print(f"The extracted data is as follows:\n{function_call_result}") else: raise ValueError("Unexpected result type received!") ``` 此部分演示了如何构建一个JSON Schema来描述参数期望值,并将之嵌入到提示语境当中去引导LLMs正确地解析信息并作出相应的动作响应。 #### Prompt格式优化技巧 最后值得注意的是,良好的Prompt设计对于提升LLM函数调用的成功率至关重要。研究表明精心调整后的Prompt样式可以帮助提高系统的整体表现效果[^5]。因此,在实际应用过程中应当重视这方面的工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测试论道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值