给你一个整数数组
coins
,表示不同面额的硬币;以及一个整数amount
,表示总金额。计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回
-1
。你可以认为每种硬币的数量是无限的。
分析:
拿到这个题,一开始考虑的是用贪心算法,即每次尽可能取最大的硬币,但是这种思路有个很大的问题,就是每次取最大的值,计算到后面不一定能拼出等于amount的解。
本题其实也就是找路径的问题,可以看做是一个树形结构。
【递归】
看例题:给出amount=11,那么我们可以尝试找到amount=10,9,8的解,这三个解取最小的值,然后加1,就是amount=11的解。
这样的话,就可以尝试通过递归去解决本题
public class Test322 {
// 定义最终解,全局变量,可以减少参数的传递。
int res = Integer.MAX_VALUE;
public int coinChange01(int[] coins, int amount) {
if (coins.length <= 0) {
return -1;
}
findWay01(coins, amount, 0);
return res == Integer.MAX_VALUE ? -1 : res;
}
// 递归寻找最优解,因为最后取值res,所有递归中只要在适当时机给res赋值就可以了,这里不需要返回值
public void findWay01(int[] coins, int amount, int count) {
// 循环跳出条件1,此路不通
if (amount < 0) {
return;
}
// 循环跳出条件2,可以给res赋值了
if (amount == 0) {
res = Math.min(res, count);
return;
}
// 遍历给出来的数组,然后递归
for (int i = 0; i < coins.length; i++) {
// 递归调用
findWay01(coins, amount - coins[i], count + 1);
}
}
}
【记忆化搜索】
上述递归调用,并不能完全通过用例,从给出来的图也可以看出,递归的过程中是有很多节点进行了重复计算的,那么可以进行优化,定义一个数组,用于存放计算过的节点数据,这样递归的过程中,如果发现已经计算过了,直接从数组中取值就可以了,不需要重复计算。
public class Test322 {
// 定义缓存数组为全局变量,这样方便取值
int[] memory;
public int coinChange02(int[] coins, int amount) {
if (coins.length <= 0) {
return -1;
}
memory = new int[amount + 1];
return findWay02(coins, amount);
}
public int findWay02(int[] coins, int amount) {
// 循环跳出条件1,此路不通,跳出循环
if (amount < 0) {
return -1;
}
// 循环跳出条件2,找到解了,跳出循环
if (amount == 0) {
return 0;
}
// 已经计算过了,直接取值就行了
if (memory[amount] != 0) {
return memory[amount];
}
// 定义memory[amount] 最小值
int min = Integer.MAX_VALUE;
// 循环数组
for (int i = 0; i < coins.length; i++) {
// 递归计算,减去当前数组元素后,最小值
int res = findWay02(coins, amount - coins[i]);
// 最小值大于等于0,并且比当前最小值还小的话,才有效
if (res >= 0 && res < min) {
// 加上去掉的当前数组元素,min = res + 1
min = res + 1;
}
}
// 把计算出来的值存入数组,记忆化搜索
memory[amount] = min == Integer.MAX_VALUE ? -1 : min;
// 返回要计算的amount下的最小值
return memory[amount];
}
}
【动态规划】
上面的记忆化搜索是先从 memory[amonut−1]开始,从上到下
动态规划从 memory[0] 开始,从下到上
class Solution {
int[] memory;
public int coinChange(int[] coins, int amount) {
if (coins.length <= 0) {
return -1;
}
memory = new int[amount + 1];
// amount为0,不需要计算,直接返回0
memory[0] = 0;
// 从 amount为1 开始计算
for (int i = 1; i < memory.length; i++) {
// 定义一个初始最小值
int min = Integer.MAX_VALUE;
// 遍历数组
for (int j = 0; j < coins.length; j++) {
// i >= coins[j]:如果当前amount比当前数组元素大,说明可以取值 memory[i - coins[j]] + 1
// memory[i - coins[j]] < min):如果memory[i - coins[j]]比当前值小,说明有其他的分支可以取到更小的值,那么就需要更新最小值min
if (i >= coins[j] && memory[i - coins[j]] < min) {
// 更新最小值min
min = memory[i - coins[j]] + 1;
}
}
// 将最小值缓存起来,这里不要判断是否等于Integer.MAX_VALUE,因为如果赋值成-1的话,在循环里面的判断就会有问题
memory[i] = min;
}
return memory[amount] == Integer.MAX_VALUE ? -1 : memory[amount];
}
}