LeetCode 刷题-322, 从递归到记忆化搜索到动态规划

本文介绍了如何使用递归、记忆化搜索和动态规划方法解决零钱兑换问题,通过优化算法减少重复计算,找到凑成总金额所需最少硬币数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

322. 零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

分析:

拿到这个题,一开始考虑的是用贪心算法,即每次尽可能取最大的硬币,但是这种思路有个很大的问题,就是每次取最大的值,计算到后面不一定能拼出等于amount的解。

本题其实也就是找路径的问题,可以看做是一个树形结构。

【递归】

看例题:给出amount=11,那么我们可以尝试找到amount=10,9,8的解,这三个解取最小的值,然后加1,就是amount=11的解。

这样的话,就可以尝试通过递归去解决本题

public class Test322 {

    // 定义最终解,全局变量,可以减少参数的传递。
    int res = Integer.MAX_VALUE;

    public int coinChange01(int[] coins, int amount) {
        if (coins.length <= 0) {
            return -1;
        }
        findWay01(coins, amount, 0);

        return res == Integer.MAX_VALUE ? -1 : res;
    }

    // 递归寻找最优解,因为最后取值res,所有递归中只要在适当时机给res赋值就可以了,这里不需要返回值
    public void findWay01(int[] coins, int amount, int count) {
        // 循环跳出条件1,此路不通
        if (amount < 0) {
            return;
        }

        // 循环跳出条件2,可以给res赋值了
        if (amount == 0) {
            res = Math.min(res, count);
            return;
        }

        // 遍历给出来的数组,然后递归
        for (int i = 0; i < coins.length; i++) {
            // 递归调用
            findWay01(coins, amount - coins[i], count + 1);
        }
    }
}

【记忆化搜索】

上述递归调用,并不能完全通过用例,从给出来的图也可以看出,递归的过程中是有很多节点进行了重复计算的,那么可以进行优化,定义一个数组,用于存放计算过的节点数据,这样递归的过程中,如果发现已经计算过了,直接从数组中取值就可以了,不需要重复计算。

public class Test322 {
    // 定义缓存数组为全局变量,这样方便取值
    int[] memory;

    public int coinChange02(int[] coins, int amount) {
        if (coins.length <= 0) {
            return -1;
        }
        memory = new int[amount + 1];

        return findWay02(coins, amount);
    }

    public int findWay02(int[] coins, int amount) {
        // 循环跳出条件1,此路不通,跳出循环
        if (amount < 0) {
            return -1;
        }
        // 循环跳出条件2,找到解了,跳出循环
        if (amount == 0) {
            return 0;
        }

        // 已经计算过了,直接取值就行了
        if (memory[amount] != 0) {
            return memory[amount];
        }

        // 定义memory[amount] 最小值
        int min = Integer.MAX_VALUE;
        // 循环数组
        for (int i = 0; i < coins.length; i++) {
            // 递归计算,减去当前数组元素后,最小值
            int res = findWay02(coins, amount - coins[i]);
            // 最小值大于等于0,并且比当前最小值还小的话,才有效
            if (res >= 0 && res < min) {
                // 加上去掉的当前数组元素,min = res + 1
                min = res + 1;
            }
        }
        // 把计算出来的值存入数组,记忆化搜索
        memory[amount] = min == Integer.MAX_VALUE ? -1 : min;
        // 返回要计算的amount下的最小值
        return memory[amount];
    }
}

【动态规划】

上面的记忆化搜索是先从 memory[amonut−1]开始,从上到下
动态规划从 memory[0] 开始,从下到上

class Solution {
    int[] memory;
    public int coinChange(int[] coins, int amount) {
        if (coins.length <= 0) {
            return -1;
        }

        memory = new int[amount + 1];
        // amount为0,不需要计算,直接返回0
        memory[0] = 0;

        // 从 amount为1 开始计算
        for (int i = 1; i < memory.length; i++) {
            // 定义一个初始最小值
            int min = Integer.MAX_VALUE;
            // 遍历数组
            for (int j = 0; j < coins.length; j++) {
                // i >= coins[j]:如果当前amount比当前数组元素大,说明可以取值 memory[i - coins[j]] + 1 
                // memory[i - coins[j]] < min):如果memory[i - coins[j]]比当前值小,说明有其他的分支可以取到更小的值,那么就需要更新最小值min
                if (i >= coins[j] && memory[i - coins[j]] < min) {
                    // 更新最小值min
                    min = memory[i - coins[j]] + 1;
                }
            }
            // 将最小值缓存起来,这里不要判断是否等于Integer.MAX_VALUE,因为如果赋值成-1的话,在循环里面的判断就会有问题
            memory[i] = min;
        }
        return memory[amount] == Integer.MAX_VALUE ? -1 : memory[amount];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值