ModSum

本文探讨了一个数学问题ModSum,目标是在给定整数N的情况下,寻找一个排列{P1,P2,...,PN}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ModSum

Problem Statement

 

For an integer N, we will choose a permutation {P1,P2,…,PN} of {1,2,…,N}.

Then, for each i=1,2,…,N, let Mi be the remainder when i is divided by Pi.

Find the maximum possible value of M1+M2+[cdots]+MN.

Constraints

 

  • N is an integer satisfying 1≤N≤109.

Input

 

Input is given from Standard Input in the following format:

N

Output

 

Print the maximum possible value of M1+M2+[cdots]+MN.

Sample Input 1

 

2

Sample Output 1

 

1

When the permutation {P1,P2}={2,1} is chosen, M1+M2=1+0=1.

Sample Input 2

 

13

Sample Output 2

 

78

Sample Input 3

 

1

Sample Output 3

 

0

一个数模比他本身大的数的结果就是他本身,so,要让[1,n]分别取模[1,n]中的一个数并且使取模后的结果的和最大,那么就要使每个数取模后尽量大(一个数取模后最大也只能是本身了(笑)),所以只有1到(n-1)的数分别对2 — n取模,结果就是1到(n-1)的和,再加上n对1取模的结果,其实就是前(n-1)项的和,这样子才是最大的。

 

#include<bits/stdc++.h>

using namespace std;
int main()
{
	int n;
	while(cin >> n){
		long long ans = 0;
		for(int i = 0;i < n;i ++){
			ans += i;
		}
		cout << ans << endl;
	}
	return 0;
}

 

内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值