用Diffusion做超分

文章介绍了基于能量模型的DiffusionModels如何用于图像生成和超分辨率任务。SR3和LDM-SR是两种利用迭代细化提升图像分辨率的方法,其中LDM-SR在视觉效果上表现出色。此外,StableDiffusion2.0是一个开源项目,展示了高阶Diffusion模型在4倍超分辨率及其他图像转换任务中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

diffusion model是一种基于能量模型的生成式模型,可以通过迭代细化的过程从噪声中生成图像、音频、文本等数据²。diffusion model可以用于条件图像生成,也就是给定一个低分辨率或者不完整的图像,生成一个高分辨率或者完整的图像¹³。

目前,有一些论文和项目已经尝试了使用diffusion model来实现图像超分辨率,也就是从低分辨率图像生成高分辨率图像的任务。例如:

  • SR3: Image Super-Resolution via Iterative Refinement¹:这是一篇2021年发表在ICLR上的论文,提出了一种通过迭代细化实现图像超分辨率的方法,受去噪扩散概率模型(DDPM)和去噪分数匹配(denoising score matching)的启发。该方法使用一个U-Net结构的网络,通过去噪目标进行训练,以迭代方式从输出中去除各种级别的噪声。该方法在不同放大系数下对人脸和自然图像超分辨率有效,在标准的8×面部超分辨率任务中,SR3的愚人率接近50%,优于FSRGAN和PULSE,后者的愚人率最高为34%。
  • LDM-SR: Latent Diffusion Model for Image Super-Resolution⁴:这是一个基于latent diffusion model的图像超分辨率方案,和SR3的做法相似,但是直接将低分辨率图像和Latent space 噪声合并一起,输入到Unet,后面通过Decoder 4倍上采样,生成对应的超分辨率图像。相比SR3,在生成结果上取得更低的FID值,并且视觉效果上更自然细腻。
  • Stable Diffusion 2.0⁵:这是一个开源项目,使用了一个高阶Diffusion模型,将图像分辨率提高了4倍。该项目还包括了其他应用场景,如Depth-to-Image、Image-to-Image等。

(1) Diffusion Models专栏文章汇总:入门与实战 - 知乎. https://zhuanlan.zhihu.com/p/566059899.
(2) SR3:Image Super-Resolution via Iterative Refinement - 知乎. https://zhuanlan.zhihu.com/p/444218616.
(3) 【达摩院OpenVI】AIGC技术在图像超分上的创新应用 … https://blog.csdn.net/sunbaigui/article/details/129275463.
(4) Stable Diffusion 2.0版本发布!超分辨率、Depth-to-Image等 … https://blog.csdn.net/BAAIBeijing/article/details/128030480.
(5) 【OpenVI-图像超分实战篇】别用GAN做超分了,快来试试 … https://developer.aliyun.com/article/1173669.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值