注意:本文主要参考:https://www.tensorflow.org/install/gpu
并经过实践证明
解决问题:
Anaconda +Geforce RTX 2060 +CUDA+cuDNN+Visual Studio+keras+tensorflow-gpu
使用keras+tensorflow 调用GPU并行加速
1 前提条件:我的笔记本是联想游戏本 拯救者 Y7000P 显卡是NVIDIA Geforce RTX 2060 显存是6GB
我之前的笔记本是华为轻薄本,显卡是MX 250 ,显存只有2GB,但是也可以调用该GPU跑机器学习的程序,所以基本上所有的NVIDIA显卡应该都可以通过一系列安装操作,跑起来机器学习的并行加速
3 基本知识:你有一张显卡,你想用keras去调用该显卡进行并行加速,你需要以下操作,
(1)为你的显卡配置相匹配的的CUDA 和cuDNN(CUDA和cuDNN需要相匹配)
(2)安装Anaconda(安装anaconda之前需要安装Visual Studio2015)
(3)创建Anaconda虚拟环境(创建的同时,指定python的版本,只有3.5到3.7的python才可以)
(4)在anaconda虚拟环境中使用pip安装与CUDA相匹配的tensorflow-gpu(版本不能是最新的,也不能太高,一般1.几,否则keras不支持)
(5)在anaconda虚拟环境中使用pip安装与tensorflow-gpu相匹配的keras(版本也不能是最新的)
所有的配置都是根据以下这张表
注意:由于keras好像不支持2.0.0以上版本的tensorflow-gpu,所以你能选择的最高tensorflow-gpu版本就是1.15.0,当然你也可以安装其他版本,对应的keras如下
tensorflow-gpu 1.5.0 匹配keras2.1.4
tensorflow-gpu 1.4.0 匹配keras2.1.3
tensorflow-gpu 1.3.0 匹配keras2.1.2
tensorflow-gpu 1.2.0 匹配keras2.1.2
不过,根据我的经验,貌似你可以将tensorflow-gpu 1.2.0到tensorflow 1.5.0,与keras 2.1.2到keras 2.1.4任意匹配,但只能是这八个里面挑两个
以上理清了这些依赖项的关系
接下来开始傻瓜式教学
**
根据上面这张表,除了Build tools栏目下的Bazel你不需要安装,其他的都需要,安装顺序如下
MSVC
CUDA
cuDNN
python
tensorflow-gpu
又由于我用的Anaconda+keras
所以我的安装顺序为
MSVC
CUDA
cuDNN
Anaconda(anaconda里的环境自带python,所以不用自己安装)
tenso