基于多种模型组合的人民币美元汇率分析与预测方法研究——ARIMA-GARCH、SA-LSTM及混合模型的协同应用 毕业论文+项目源码及数据库文件

!!! 有需要的小伙伴可以通过文章末尾名片咨询我哦!!!

 💕💕作者:优创学社
💕💕个人简介:本人在读博士研究生,拥有多年程序开发经验,辅导过上万人毕业设计,支持各类专业;如果需要论文、毕设辅导,程序定制可以联系作者
💕💕各类成品java系统 。javaweb,ssh,ssm,springboot等等项目框架,源码丰富,欢迎咨询交流。学习资料、程序开发、技术解答、代码讲解、源码部署,需要请看文末联系方式。

基于多模型组合的人民币美元汇率分析与预测研究

——ARIMA-GARCH、SA-LSTM及混合模型的协同应用

【摘要】本文针对人民币美元汇率波动的复杂性与预测难题,提出基ARIMA-GARCH、模拟退火优化长短期记忆网络(SA-LSTM)及混合模型的协同预测方法。研究选取2012年1月6日至 2024年12月4日的汇率中间价数据,通过对数差分处理和时序分析,构建三种模型并对比其预测性能。ARIMA-GARCH模型通过平稳性检验、ARIMA定阶及GARCH异方差建模,有效捕捉汇率的线性关系和波动集群效应;SA-LSTM模型利用模拟退火算法优化网络结构,提升对长期依赖关系的拟合能力,但对短期波动捕捉不足。在此基础上,混合模型通过方差倒数法组合两种单一模型,权重分别为 0.7(ARIMA-GARCH)和 0.3(SA-LSTM),显著提升预测精度。实验结果表明,混合模型的均方误差(MSE)为 2.921×10⁻⁵,较ARIMA-GARCH和SA-LSTM分别降低 21.7% 和 61.2%,平均绝对误差(MAE)和平均绝对百分比误差(MAPE)也优于单一模型,验证了组合模型的有效性。研究为汇率预测提供了新的方法论参考,对投资者决策和政策制定具有实践价值。

【关键词】人民币美元汇率;ARIMA-GARCH模型;SA-LSTM模型;混合模型;预测精度;

Research on Analysis and Prediction of the Exchange Rate between RMB and US Dollar Based on Multi-Model Combination

-- The collaborative application of ARIMA-GARCH, SA-LSTM and hybrid models

Abstract This paper proposes a collaborative prediction method based on ARIMA-GARCH, simulated annealing optimized Long Short-Term Memory Network (SA-LSTM), and hybrid models in view of the complexity and prediction difficulties of the fluctuation of the RMB and US dollar exchange rate. The study selected the central parity rate data of exchange rates from January 6, 2012 to December 4, 2024. Through logarithmic difference processing and time series analysis, three models were constructed and their predictive performances were compared. The ARIMA-GARch model effectively captures the linear relationship and fluctuation clustering effect of exchange rates through stationarity tests, ARIMA order determination and GARCH heteroscedasticity modeling. The SA-LSTM model utilizes the simulated annealing algorithm to optimize the network structure and enhance the fitting ability for long-term dependencies, but it is insufficient in capturing short-term fluctuations. On this basis, the hybrid model combines two single models through the variance reciprocal method, with weights of 0.7 (ARIMA-GARCH) and 0.3 (SA-LSTM) respectively, significantly improving the prediction accuracy. The experimental results show that the mean square error (MSE) of the mixed model is 2.921×10⁻⁵, which is 21.7% and 61.2% lower than that of ARIMA-GARCH and SA-LSTM respectively. The Mean absolute error (MAE) and mean absolute percentage error (MAPE) are also superior to those of the single model. The validity of the combined model was verified. The research provides a new methodological reference for exchange rate prediction and has practical value for investors' decision-making and policy-making.

KeywordsExchange rate between RMB and USD; ARIMA-GARCH model; SA-LSTM model; Hybrid model; Prediction accuracy;

目录

1、引言.... 1

1.1 研究背景与意义.... 1

1.1.1 研究背景.... 1

1.1.2 研究意义.... 1

1.2 研究现状.... 2

1.2.1 线性模型.... 2

1.2.2 非线性模型.... 2

1.2.3 组合模型.... 3

1.3 研究内容与方法.... 3

1.4 模型构建流程.... 4

2、数据来源与说明.... 5

2.1 数据来源.... 5

2.2  数据说明.... 5

3、相关理论基础.... 7

3.1 ARIMA模型原理... 7

3.2 GARCH模型原理... 8

3.2.1 ARCH模型... 8

3.2.2 GARCH模型.... 8

3.3 LSTM模型原理.... 9

3.4 模拟退火算法原理.... 11

4、模型构建.... 13

4.1 ARIMA-GARCH模型.... 13

4.1.1 平稳性与纯随机性检验.... 13

4.1.2 ARIMA模型定阶与建立.... 14

4.1.3 ARCH 效应检验.... 17

4.1.4 GARCH 模型建立.... 17

4.1.5 ARIMA-GARCH 模型预测.... 18

4.2 SA-LSTM模型.... 19

4.2.1 数据预处理.... 19

4.2.2 模拟退火调优与LSTM模型建立.... 19

4.2.3 SA-LSTM 模型预测.... 21

4.3 混合模型.... 22

5、结果与分析.... 23

5.1 模型拟合效果分析.... 23

5.1.1 ARIMA-GARCH模型的优势.... 23

5.1.2 SA-LSTM模型的特点与不足... 23

5.2 模型预测效果评估.... 24

5.2.1 MSE、MAE、MAPE理论介绍.... 24

5.2.2 模型预测效果评估结果.... 24

5.2.3 混合模型的提升效果分析... 25

6、结论与展望.... 25

6.1 研究结论.... 25

6.1.1 单一模型的优缺点分析.... 25

6.1.2 混合模型的综合优势与预测精度提升.... 26

6.1.3 研究成果的理论与实践价值.... 26

6.2  研究展望.... 26

6.2.1 引入更多解释变量,完善模型框架.... 26

6.2.2 深化深度学习模型架构优化.... 26

6.2.3 拓展研究方法与应用场景... 26

6.2.4 加强实时性与动态更新机制.... 26

参考文献.... 27

1、引言

1.1 研究背景与意义

1.1.1 研究背景

汇率,作为不同国家货币之间的兑换比率,表示两个国家货币之间的相对价值,是衡量各国经济联系的关键指标[1]。在经济全球化不断深入的当下,人民币美元汇率在国际贸易和金融市场中占据着举足轻重的地位。国与国之间的经济联系愈发紧密,汇率作为衡量不同国家货币之间兑换比率的关键指标,在国际贸易、国际投资和国际金融领域扮演着举足轻重的角色。人民币与美元作为全球重要的货币,其汇率波动不仅反映了中美两国经济实力的变化,还对全球经济格局产生着深远影响。

近年来,国际经济形势复杂多变,贸易摩擦、政治局势动荡以及突发公共卫生事件等因素相互交织,使得人民币美元汇率波动日益频繁且幅度增大。从2012-2024年期间,人民币美元汇率呈现出复杂的走势。自2012年以来,人民币美元汇率走势历经多个显著阶段。在2012-2015年期间,汇率处于相对较低水平;2015-2021年,呈现出两段山峰状走势,在2015年12月和2019年9月左右出现峰值,2018年4月则出现显著低谷;2022年至今,汇率持续处于较高水平。这种波动背后,是中美两国经济政策的博弈,如美国的货币政策调整、贸易政策变化,以及中国经济结构的转型升级、宏观经济政策的调控等,都在不同程度上推动着汇率的变化。

与此同时,金融市场的发展使得汇率预测成为投资者、企业和政策制定者密切关注的焦点。准确的汇率预测能够为外汇市场参与者提供重要的决策依据,帮助投资者把握投资时机,规避汇率风险,实现资产的保值增值;对于企业而言,可提前制定合理的生产、销售和投资计划,降低汇率波动带来的经营风险;对于政策制定者来说,有助于制定更加科学合理的货币政策和宏观经济调控政策,维护国家经济的稳定发展。然而,人民币美元汇率的变化受到众多因素的综合影响,包括经济基本面、宏观经济政策、国际资本流动、市场预期等,这些因素相互交织,使得汇率波动呈现出高度的复杂性、非线性和不确定性,传统的预测方法面临着巨大挑战。

在这样的背景下,探索更为有效的人民币美元汇率预测方法具有重要的现实紧迫性。通过对汇率波动规律的深入研究,构建精准的预测模型,能够更好地应对复杂多变的国际经济形势,为相关决策提供有力支持,这也正是本研究的出发点和重要背景。

1.1.2 研究意义

从理论层面来看,本研究有助于丰富和完善汇率预测的理论体系。现有的汇率预测模型众多,各有优劣。传统的参数模型,如ARIMA模型,在处理线性、平稳时间序列方面具有一定优势,但对于汇率数据中存在的异方差性和复杂的非线性关系难以有效刻画;而神经网络模型,如LSTM,虽然在处理非线性和长期依赖关系上表现出色,但模型结构复杂,调参困难,容易出现过拟合现象。本研究将ARIMA-GARCH模型与SA-LSTM模型相结合构建混合模型,探索不同模型在捕捉汇率数据特征方面的优势互补,深入分析模型的性能和适用场景,为汇率预测领域提供新的理论视角和方法参考,推动相关理论的进一步发展。

从实践角度出发,精准的人民币美元汇率预测具有广泛而重要的应用价值。对于投资者而言,准确的汇率预测能够帮助他们在外汇市场、国际贸易投资等领域做出更为明智的决策。例如,在外汇交易中,投资者可以依据预测结果选择合适的交易时机和交易策略,提高投资收益,降低汇率波动带来的风险。对于进出口企业来说,汇率波动直接影响其成本和利润。通过精准预测汇率走势,企业能够合理安排生产和销售计划,提前进行套期保值操作,避免因汇率不利变动而遭受损失,增强企业的国际竞争力。对于政策制定者,准确的汇率预测结果是制定科学合理的货币政策、外汇政策和宏观经济调控政策的重要依据。有助于维持汇率稳定,促进国际收支平衡,保障国家经济的稳定健康发展,在全球经济竞争中占据有利地位。

1.2 研究现状

1.2.1 线性模型

在汇率研究领域,线性模型长期以来占据着重要地位,其中ARIMA模型应用颇为广泛ARIMA模型全称为自回归积分滑动平均模型,由BoxJenkins1970年提出,它通过对时间序列数据进行差分运算,使其达到平稳状态,进而建立自回归和移动平均模型,捕捉数据中的线性关系[2]。许少强和李亚敏(2007[3]参考人民币汇率改革确定的“一篮子货币”原则,利用ARMA模型对欧元、日元及人民币兑美元汇率的中长期走势进行预测,为汇率预测提供了一种基于线性模型的实证方法。郭琨和汪寿阳(2008[4]通过分析汇改后人民币兑美元汇率波动,建立周期 ARIMA 模型对汇率进行预测,取得了较高的预测精度。孔佳文等人(2016[5]研究美国加息压力下人民币兑美元汇率的波动,运用ARIMA模型对汇率中间价进行拟合,并对未来一周的汇率中间价进行预测,结果表明模型的预测结果较为可靠。

线性模型在汇率研究中具有一定优势。它计算相对简单,建模速度快,对于小数据量和稀疏数据也能有较好的表现。例如,在处理一些数据量有限且波动相对平稳的汇率数据时,线性模型可以快速构建并给出预测结果。其原理是基于过去的数值来预测未来数值,通过识别和建模数据的内在结构,简单易用且只需少量参数。

然而,线性模型也存在明显的局限性。汇率数据往往受到众多复杂因素的影响,呈现出非线性、非平稳的特征。线性模型难以准确刻画这些复杂的波动模式,在面对汇率数据的异方差性时也表现不佳。比如,当汇率受到突发的经济政策调整、国际政治事件等因素影响时,线性模型无法及时准确地反映这些变化,导致预测误差较大。在实际应用中,由于其假设条件较为严格,对于不符合平稳性要求的数据,需要进行复杂的预处理,且在模型选择和参数调整过程中容易出现过拟合问题,从而影响模型的泛化能力和预测准确性。

1.2.2 非线性模型

随着对汇率波动研究的深入,非线性模型在汇率研究中的应用日益受到关注。GARCH 模型(广义自回归条件异方差模型)作为一种常用的非线性模型,由Bollerslev1986年提出,它能够有效捕捉汇率波动中的集群效应,即汇率波动在一段时间内呈现出高波动与低波动交替出现的特征。惠晓峰等人(2003[6]运用GARCH模型对汇改后的人民币兑美元汇率进行建模预测,在证明GARCH模型可行性的基础上添加滚动和递归运算,以得到未来一日的人民币兑美元汇率值,结果表明递归预算下的GARCH模型预测效果更优,同时证明了GARCH模型预测短期汇率是可行的。刘妹伶等人(2008[7]使用ARIMA模型和GARCH模型对人民币兑美元的历史数据进行建模,并对预测误差进行分析,结果表明GARCH模型在人民币兑美元汇率数据的预测上结果更优。

LSTM(长短期记忆网络)神经网络是另一种在汇率研究中应用广泛的非线性模型,由HochreiterSchmidhuber1997年提出。它通过特殊的门控机制,能够有效处理时间序列数据中的长序列依赖问题,克服了传统循环神经网络在处理长序列时的梯度消失和梯度爆炸问题[8]。李伟(2019[9]利用迁移学习提升LSTM性能以预测六种货币的每分钟汇率,预测结果与BP神经网络、支持向量回归和普通LSTM模型比较,最终结果表明迁移学习下的LSTM模型有更好的预测效果。张蕾等人(2021[10]从汇率波动的长记忆性出发,对加入代表市场情绪指标的VIX指数的汇率数据进行预测,结果表明与传统波动率预测模型相比,加入情绪指标的LSTM模型预测精度更高。

尽管GARCHLSTM等非线性模型在汇率研究中取得了一定成果,但它们也存在各自的不足。GARCH模型依赖于特定的假设条件,在实际应用中,若这些假设不成立,模型的有效性将受到质疑。例如,它假设汇率波动的方差仅依赖于过去的波动和当前信息,然而在现实中,汇率波动可能受到多种突发因素的影响,这种假设无法完全反映市场的真实情况LSTM模型虽然在处理长序列依赖方面表现出色,但它的调参过程较为复杂,需要大量的实验和经验来确定最优参数,这不仅耗费时间和精力,还对研究者的专业水平提出了较高要求。此外,LSTM模型在训练过程中计算量较大,需要较高的硬件资源支持,且在数据量有限的情况下容易出现过拟合现象。

1.2.3 组合模型

为了克服单一模型的局限性,组合模型应运而生。组合模型通过综合多种模型的优势,试图更全面地捕捉汇率波动的特征,提高预测精度。在汇率预测中,组合模型的应用形式多样。例如,惠晓峰等人(2002[11]结合经典BPBack Propagation)神经网络和遗传算法提出GABP神经网络预测模型,对人民币兑美元汇率进行预测,得到了满意的预测结果。刘潭秋和谢赤(2006[12]利用GARCH模型有效抓取时间序列动态特征的优点,与人工神经网络结合预测汇率每日数据,发现组合模型的预测效果较单一模型有了很大提升。

Tripathi等人(2021[13]在对欧元、英镑和日元兑美元汇率的研究中,使用了ARIMA、神经网络以及平均预测模型,并采用最佳权重组合的方式对线性和非线性时间序列预测结果进行整合,该组合模型在预测精度上获得了有效提升。陈东东和沐年国(2018[14]在数据预处理阶段,采用HP滤波算法将离岸人民币汇率数据序列分解为周期项与趋势项,针对各自特征分别采用机器学习模型和ARIMA模型进行建模,最后融合两种预测结果进行预测,实证发现组合模型的预测效果优于单一模型。傅魁(2017[15]采用MEEMD将汇率分解为高频项、低频项和趋势项,再根据各自特征利用 ElmanSVMARIMA 分别对每一项进行建模预测。熊志斌(2021[16]利用CEEMDAN将实验数据分解成7个高频分量、3个低频分量和1个趋势分量,再通过利用LSTM对各分量序列进行建模,将预测结果加总后得到最终预测结果,并将该方法应用于美元、欧元、英镑及日元兑人民币汇率预测中,实证表明该预测方法相对误差小、预测精度稳定,具有良好的经济实用性。

组合模型在汇率预测中发挥了重要作用,它能够结合不同模型的长处,弥补单一模型的不足,从而提高预测的准确性和可靠性。然而,组合模型也存在一些问题。一方面,模型的构建和参数调整过程更为复杂,需要同时考虑多个模型的参数设置和组合方式,增加了研究的难度和工作量。不同模型之间的协同效果难以保证,若组合不当,可能无法充分发挥各个模型的优势,甚至导致预测性能下降。另一方面,组合模型通常需要更多的数据来进行训练和验证,对数据的质量和数量要求更高,在实际应用中可能受到数据可获取性的限制。

1.3 研究内容与方法

本研究聚焦于人民币美元汇率,旨在通过运用ARIMA-GARCH、SA-LSTM及混合模型,深入分析其汇率走势并进行精准预测,为相关经济决策提供有力支持。

在研究内容方面,选取2012年1月6日至2024年12月4日的人民币美元汇率中间价数据作为研究对象,对原始数据进行对数差分处理与可视化分析,以探究汇率走势的阶段特征。在此基础上,运用ARIMA-GARCH模型,对汇率数据进行平稳性和纯随机性检验,结合自相关系数(ACF)和偏自相关系数(PACF)图,利用AIC、BIC等准则确定ARIMA模型的阶数并建立模型。考虑到数据的异方差性,进一步建立GARCH模型对ARIMA模型拟合的误差进行建模,从而更准确地刻画汇率波动。同时,构建SA-LSTM模型,通过模拟退火算法对 LSTM 模型的架构进行调整,寻找适合该数据的网络结构,利用LSTM模型处理长序列依赖的能力,挖掘汇率数据中的长期关系。此外,还建立混合模型,根据ARIMA-GARCH模型和SA-LSTM模型在训练集上的误差平方和确定权重,将两个模型在测试集的预测值进行赋权组合,综合两个模型的优势,提升预测精度。

在研究方法上,采用对比分析方法评估模型优劣。通过对比不同模型在训练集和测试集上的预测结果,选取均方误差(MSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)等指标进行量化评估,从而清晰地判断各模型的预测性能,确定最优模型。利用模拟退火算法优化LSTM模型,该算法源于固体退火的物理现象,通过模拟温度的变化来寻找全局最优解。在LSTM模型调优过程中,设置初始温度、冷却速率和最大迭代次数等参数,每次迭代时对LSTM层的神经元个数进行调整,并根据均方误差(MSE)来判断是否接受新的网络结构,最终得到较优的模型架构。综合运用这些方法,全面深入地对人民币美元汇率进行分析与预测,为研究人民币美元汇率波动规律提供了多维度的视角和更可靠的模型依据,有助于提高汇率预测的准确性和科学性,为经济决策提供更具价值的参考

1.4 模型构建流程

本研究构建了ARIMA-GARCH、SA-LSTM及混合模型,以实现对人民币美元汇率的有效分析与预测,具体流程如下:

(1)ARIMA-GARCH 模型构建流程

数据预处理与检验:对2012年1月6日至2024年12月4日的人民币汇率收盘价数据进行对数处理和差分,得到汇率对数收益率时序数据。通过PP检验判断原始数据不平稳,而对数收益率数据平稳;再利用Ljung-Box检验确定序列具有可预测性,适合用ARMA模型拟合。

ARIMA模型定阶与估计:观察ACF和PACF图,结合AIC、BIC等准则确定ARIMA模型的阶数为(1,1,1)。使用训练集数据拟合模型参数,得到最终ARIMA模型表达式,并通过绘制拟合效果图评估模型拟合情况。

ARCH效应检验与GARCH模型构建:分析汇率对数收益率时序图,发现存在波动集群效应,利用Portmanteau Q检验和LM检验对残差平方序列进行ARCH效应检验。结果表明存在ARCH效应,选用低阶GARCH模型和高阶ARCH模型对残差进行拟合,最终确定GARCH(1,1)模型。对该模型残差进行检验,判断其对波动信息的提取能力,并绘制拟合效果图展示模型拟合效果,得到ARIMA-GARCH模型的最终表达式。

模型预测:基于建立的ARIMA-GARCH模型,对测试集的均值和置信区间进行估计,通过对比预测值和实际值,评估模型在测试集上的预测效果。

(2)SA-LSTM模型构建流程

数据预处理:对汇率对数时序数据进行MinMaxScaler缩放处理,将数据值控制在0-1之间。设置时间步长为50,构建移动窗口,将数据整理为适合LSTM模型输入的结构,划分训练集和测试集。

模拟退火调优与LSTM模型建立:采用模拟退火算法对LSTM模型的架构进行调整。初始化网络结构和参数,通过迭代寻找最优的LSTM层神经元个数组合,以均方误差为优化目标。最终得到最优结构的LSTM模型,并绘制训练集拟合效果图评估模型表现。

模型预测:利用建立好的SA-LSTM模型对测试集的均值和置信区间进行估计,通过对比预测值和实际值,分析模型在测试集上的预测效果。

(3)混合模型构建流程

采用方差倒数法,根据ARIMA-GARCH模型和SA-LSTM模型在训练集上的误差平方和确定权重。将两个模型在测试集的预测值进行赋权组合,得到混合模型的预测值。通过绘制预测对比图,并选取均方误差、平均绝对误差和平均绝对百分比误差等指标,对比各模型的预测效果,评估混合模型的优势。

为更直观展示模型构建流程,如图1-1所示:

图1-1模型构建流程图

该图清晰呈现了整个模型构建的脉络。从数据处理开始,先计算汇率对数并进行差分序列处理,之后分别对ARIMA-GARCH模型和SA-LSTM模型展开构建。ARIMA-GARCH模型这边,经平稳性检验、ARCH检验等一系列步骤确定模型并进行预测;SA-LSTM模型则通过构建网络、模拟退火算法调优来确定模型并预测。最后,将两个模型的预测结果进行整合,建立混合模型得出最终的预测均值。

2、数据来源与说明

2.1 数据来源

本研究的数据来源于专业的金融数据网站https://db.resset.com。该网站提供了丰富的金融市场数据,涵盖各类金融产品的历史交易信息,其数据具有较高的权威性和可靠性,为众多金融研究提供了有力的数据支持。

在本次关于人民币美元汇率的研究中,所使用的数据时间跨度为2012年1月6日至2024年12月4日,这一时间段涵盖了较为长期的汇率波动情况,能够较为全面地反映人民币美元汇率在不同经济形势和政策环境下的变化趋势,为后续的模型分析和预测提供了充足的数据基础。

2.2  数据说明

本文的实证研究对象为人民币兑美元汇率中间价,下文简称“汇率”。本文选取了2012年1月06日至2024年12月04日的人民币汇率数据, 原始数据中存在因节假日导致的交易缺失以及个别日期的数据缺失情况。为保证数据的完整性和连续性,使后续分析结果更具可靠性,对这些缺失数据进行了处理。经过仔细筛选和整理,最终得到了661个有效数据,由于数据较多,下面仅展示部分数据(如图2-1所示):

图2-1 人民币美元汇率数据

从该网站获取的人民币美元汇率数据包含多个变量,具体有开盘价、最高价、最低价以及收盘价。这些变量从不同角度记录了每日汇率的交易情况,开盘价反映了当日交易开始时的汇率水平,最高价和最低价展示了当日汇率波动的上下限,收盘价则体现了当日交易结束时的最终汇率价格。然而,经分析发现这些变量之间存在高度的相关性。若在后续研究中同时使用多个高度相关的变量,可能会导致多重共线性问题,影响模型的准确性和稳定性 。因此,为确保研究的有效性和准确性,本研究选取收盘价作为主要分析变量。然后对收盘价数据进行绘图,如图2-2所示

图2-2 2012-2024人民币美元汇率时序图

基于图2-2可以初步推断人民币汇率原始序列存在较大波动,围绕平均值的波动情况并不稳定,这表明该序列可能是不平稳的。近12年来的汇率走势可以分成3个阶段进行分析:

(1)2012年∼2015年:汇率处于相低较低水平。

(2)2015年∼2021年:汇率大体呈现两段山峰状,峰值大致在2015年12月和2019年9月左右,但在2018年4月也存在显著低谷。

(3)2022年至今:汇率一直处于较高水平。

以上数据将作为后续模型构建、分析以及预测的核心数据基础,为深入研究人民币美元汇率的变化规律和趋势提供了坚实的数据保障。人民币美元汇率的变化受到到多方面的影响,体现了中美两个国家在经济政策等一系列方面的博弈,通过研究时间序列前后的关系,有助于帮助我们理解汇率变化的成因以及背后蕴藏的信息。

研究结论

6.1.1 单一模型的优缺点分析

(1)ARIMA-GARCH 模型

该模型在捕捉人民币美元汇率的线性关系和处理异方差性方面表现出显著优势ARIMA部分通过差分运算将非平稳序列转化为平稳序列,结合自回归和移动平均项有效提取数据中的线性趋势,训练集上的拟合残差控制在0.002内,表明其对线性特征的刻画精度较高GARCH部分进一步针对残差的异方差性建模,通过引入滞后条件方差项,成功捕捉到汇率波动的集群效应,残差白噪声检验显示模型对波动信息的提取充分,有效提升了模型对金融数据典型特征的适应性。然而,该模型的局限性在于仅能处理线性关系,对汇率中可能存在的非线性长期依赖关系刻画不足,在预测中可能因忽略复杂关联而产生偏差。

(2)SA-LSTM 模型

作为深度学习模型,SA-LSTM通过模拟退火算法优化网络结构,有效提升了对汇率数据长期依赖关系的捕捉能力。其独特的门控机制(遗忘门、输入门、输出门)能够选择性地保留和更新信息,在训练集上对汇率大周期趋势的拟合效果较好,尤其适用于受宏观经济政策、市场预期等长期因素影响的汇率波动场景。但该模型对短期细小波动的捕捉能力较弱,拟合曲线过度平滑,且训练过程中存在残差分布偏离正态分布的问题,反映出其在细节波动和噪声处理上的不足,预测误差相对较高(MAE0.007)。

6.1.2 混合模型的综合优势与预测精度提升

混合模型通过方差倒数法对ARIMA-GARCH和SA-LSTM进行赋权组合(权重分别为约0.7和0.3),显著提升了预测精度。从评估指标看,混合模型的MSE(2.921×10⁻⁵)、MAE(0.003)和MAPE(0.002)均优于单一模型,较ARIMA-GARCH分别降低21.7%、25%和持平,较SA-LSTM降低61.2%、57.1%和33.3%。

这种提升源于两种模型的优势互补:ARIMA-GARCH的线性建模和异方差处理能力弥补了SA-LSTM在短期波动和方差建模上的不足,而SA-LSTM的长期依赖捕捉能力则增强了混合模型对汇率趋势的整体把握。测试集预测结果显示,混合模型的预测值更贴近真实值,尤其在波动剧烈阶段表现出更强的鲁棒性,表明其通过集成学习有效降低了单一模型的偏差和方差。

6.1.3 研究成果的理论与实践价值

理论价值:本研究验证了线性模型与深度学习模型在汇率预测中的协同效应,为混合模型在金融时间序列分析中的应用提供了实证支持。通过对比ARIMA-GARCH与SA-LSTM的建模逻辑,揭示了线性与非线性方法在捕捉汇率特征上的差异,丰富了汇率预测的理论框架。

实践价值:对于投资者和企业而言,混合模型的高精度预测可帮助其更准确地判断汇率走势,优化外汇交易策略和风险管理方案。例如,进出口企业可依据混合模型的预测结果调整套期保值策略,降低汇率波动带来的成本风险;政策制定者可通过模型结果评估经济政策对汇率的长期影响,为货币政策调控提供参考。此外,模型的组合思路可推广至其他金融资产(如股票、大宗商品)的预测,具有广泛的实践应用潜力

更多项目:

另有10000+份项目源码,项目有java(包含springboot,ssm,jsp等),小程序,python,php,net等语言项目。项目均包含完整前后端源码,可正常运行!

!!! 有需要的小伙伴可以点击下方链接咨询我哦!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

优创学社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值