AlignedReID: Surpassing Human-Level Performance in Person Re-Identification

AlignedReID: Surpassing Human-Level Performance in Person Re-Identification

Abs

本文提出一种新的AlignedReID方法,提取全局特征,并与局部特征联合学习。全局特征学习从局部特征学习中获益很大,它通过计算两组局部特征之间的最短路径来进行对齐/匹配,而不需要额外的监督。

在联合学习之后,我们只保留全局特征来计算图像之间的相似度。该方法在Market1501和CUHK03获得rank1。

Intro

传统的方法专注于低级特征,如颜色、形状和局部描述。随着深度学习的复行,CNN已经主导了这一领域,通过各种度量学习如对比损失、三元组损失、改进三元组损失、四元组损失和难三元组损失。

许多基于cnn的方法学习全局特征,而不考虑人的空间结构,这有几个主要的缺点:

  1. 不准确的人检测框可能会影响特诊学习
  2. 姿态变化或非刚体变形使度量学习困难
  3. 人体被遮挡的部分可能会将不相关的背景引入到学习到的特征中
  4. 强调全局特征中的局部差异是很重要的,特别是当我们必须区分两个外观非常相似的人时

为了解决这些缺陷,有些工作将整个身体分为几个固定的部分,没有考虑到部分之间的对齐。然而, 它仍然遭受不准确的检测框,姿态变化和遮挡。

其他工作使用姿态估计结果进行对齐,这需要额外的监督和姿态估计步骤(这往往容易出错)

在本文中,提出了一种新的方法——AlignedReID(对齐ReID),它仍然学习全局特征,但是执行学习过程中的自动零件对齐,而不需要额外的监督或明确的姿态估计。 在学习阶段,用两个分支共同学习全局特征和局部特征。在局部分支中,通过引入最短路径损耗来对齐局部部分,在推理阶段,丢弃局部分支,只提取全局特征。发现仅应用全局特征几乎与组合全局特征和局部特征一样好。换句话说,全局特征本身,借助于局部特征学习,可以在新的联合学习框架中极大地解决上述缺陷。

在度量学习设

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值