环境信息
系统版本
# 输入命令
$ uname -m && cat /etc/*release
# 输出结果
x86_64
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=22.04
DISTRIB_CODENAME=jammy
DISTRIB_DESCRIPTION="Ubuntu 22.04.5 LTS"
PRETTY_NAME="Ubuntu 22.04.5 LTS"
NAME="Ubuntu"
VERSION_ID="22.04"
VERSION="22.04.5 LTS (Jammy Jellyfish)"
VERSION_CODENAME=jammy
ID=ubuntu
ID_LIKE=debian
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
UBUNTU_CODENAME=jammy
系统概要
- 架构:x86_64
- 系统:Ubuntu 22.04.5 LTS (Jammy Jellyfish)
- 环境:WSL (Windows Subsystem for Linux)
CUDA 安装
1. 检查GPU支持
- GPU型号:NVIDIA GeForce RTX 4060
- CUDA支持检查:https://developer.nvidia.com/cuda-gpus
2. 检查GCC版本
# 输入命令
$ gcc --version
# 输出结果
gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
说明:系统安装的是gcc 11.4.0版本,这是Ubuntu 22.04 LTS的标准gcc版本,完全满足CUDA安装的要求。
3. CUDA安装
3.1 检查当前CUDA状态
# 输入命令:检查CUDA编译器版本
$ nvcc -V
# 输入命令:检查NVIDIA驱动和CUDA运行时版本
$ nvidia-smi
# 输入命令:检查CUDA环境变量
$ echo $CUDA_HOME
$ echo $LD_LIBRARY_PATH
说明:
- 如果
nvcc -V
命令不存在,说明未安装CUDA工具包 - 如果
nvidia-smi
命令不存在,说明未安装NVIDIA驱动或WSL未正确配置GPU支持 - 环境变量未设置不一定意味着CUDA未安装,但需要正确配置才能使用
3.2 卸载已有CUDA版本(如果需要)
# 方法1:使用卸载工具(如果之前是用安装包安装的)
$ sudo /usr/local/cuda-X.Y/bin/cuda-uninstaller
# 注意:将X.Y替换为实际的CUDA版本号,如cuda-11.8
# 方法2:直接删除CUDA目录
$ sudo rm -rf /usr/local/cuda*
$ sudo apt clean && sudo apt autoclean
# 方法3:使用apt卸载(如果是通过apt安装的)
$ sudo apt-get --purge remove "cuda*"
$ sudo apt-get autoremove
说明:
- 建议在安装新版本前完全卸载旧版本,避免冲突
- 卸载后最好重启系统,确保清理完全
- 记得备份重要的CUDA项目和配置文件
3.3 安装CUDA 12.2
准备工作
# 输入命令:切换到指定conda环境
$ conda activate llaf_py310
# 输入命令:检查CUDA是否已安装
$ nvcc
# 输出结果
Command 'nvcc' not found, but can be installed with:
sudo apt install nvidia-cuda-toolkit
说明:确认系统中尚未安装CUDA工具包。
下载安装包
# 输入命令:下载CUDA 12.2安装包
$ wget https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run
# 输出结果
--2025-03-23 01:16:49-- https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run
Resolving developer.download.nvidia.com (developer.download.nvidia.com)... 2.23.227.213, 2.23.227.222
Connecting to developer.download.nvidia.com (developer.download.nvidia.com)|2.23.227.213|:443... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: https://developer.download.nvidia.cn/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run [following]
--2025-03-23 01:16:50-- https://developer.download.nvidia.cn/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run
Resolving developer.download.nvidia.cn (developer.download.nvidia.cn)... 112.90.90.91, 42.237.113.75, 61.133.50.154, ...
Connecting to developer.download.nvidia.cn (developer.download.nvidia.cn)|112.90.90.91|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 4315928767 (4.0G) [application/octet-stream]
Saving to: 'cuda_12.2.0_535.54.03_linux.run'
cuda_12.2.0_535.54.03_linux.run 100%[==============================================================>] 4.02G 14.3MB/s in 4m 57s
2025-03-23 01:21:48 (13.8 MB/s) - 'cuda_12.2.0_535.54.03_linux.run' saved [4315928767/4315928767]
说明:
- 安装包大小约4.02GB
- 下载速度平均13.8 MB/s
- 下载用时约4分57秒
- 文件已完整下载
执行安装
# 输入命令:赋予安装包执行权限
$ chmod +x cuda_12.2.0_535.54.03_linux.run
# 输入命令:运行安装程序
$ sudo sh cuda_12.2.0_535.54.03_linux.run
安装界面选项:
┌──────────────────────────────────────────────────────────────────────────────┐
│ CUDA Installer │
│ + [X] CUDA Toolkit 12.2 │
│ [X] CUDA Demo Suite 12.2 │
│ [X] CUDA Documentation 12.2 │
│ - [ ] Kernel Objects │
│ [ ] nvidia-fs │
│ Options │
│ Install │
└──────────────────────────────────────────────────────────────────────────────┘
组件说明:
-
CUDA Toolkit 12.2
- CUDA的核心工具包
- 包含编译器、库文件和开发工具
- 必须安装,建议保持选中[X]
-
CUDA Demo Suite 12.2
- CUDA示例程序和演示代码
- 用于学习和测试CUDA功能
- 建议安装,便于后续验证[X]
-
CUDA Documentation 12.2
- CUDA开发文档
- 包含API参考、编程指南等
- 建议安装,方便离线查阅[X]
-
Kernel Objects
- Linux内核相关组件
- 包含nvidia-fs子选项
- 在WSL环境中可以不安装[ ]
-
nvidia-fs
- NVIDIA GPUDirect Storage功能
- 用于GPU直接访问存储设备
- WSL环境中通常不需要[ ]
安装结果:
===========
= Summary =
===========
Driver: Not Selected
Toolkit: Installed in /usr/local/cuda-12.2/
Please make sure that
- PATH includes /usr/local/cuda-12.2/bin
- LD_LIBRARY_PATH includes /usr/local/cuda-12.2/lib64, or, add /usr/local/cuda-12.2/lib64 to /etc/ld.so.conf and run ldconfig as root
To uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-12.2/bin
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 535.00 is required for CUDA 12.2 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
sudo <CudaInstaller>.run --silent --driver
3.4 配置环境变量
# 输入命令:编辑环境配置文件
$ sudo nano ~/.bashrc
# 在文件末尾添加以下内容
export CUDA_HOME=/usr/local/cuda-12.2
export PATH=$CUDA_HOME/bin:$PATH
export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
# 输入命令:使环境变量生效
$ source ~/.bashrc
3.5 验证安装
# 输入命令:检查CUDA版本
$ nvcc -V
# 输出结果
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Jun_13_19:16:58_PDT_2023
Cuda compilation tools, release 12.2, V12.2.91
Build cuda_12.2.r12.2/compiler.32965470_0
# 输入命令:检查环境变量
(llaf_py310) yuuu@DESKTOP-M32KRCT:~/LLaMA-Factory$ echo $CUDA_HOME
/usr/local/cuda-12.2
(llaf_py310) yuuu@DESKTOP-M32KRCT:~/LLaMA-Factory$ echo $LD_LIBRARY_PATH
/usr/local/cuda-12.2/lib64:
# 输入命令:检查GPU状态
(llaf_py310) yuuu@DESKTOP-M32KRCT:~/LLaMA-Factory$ nvidia-smi
Sun Mar 23 01:47:53 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.133.07 Driver Version: 572.83 CUDA Version: 12.8 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 4060 On | 00000000:09:00.0 On | N/A |
| 0% 45C P0 N/A / 115W | 802MiB / 8188MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| No running processes found |
+-----------------------------------------------------------------------------------------+
验证说明:
-
CUDA编译器:
- 已成功安装
- 版本为12.2.91,符合预期
- 环境变量配置正确(能够直接调用nvcc命令)
-
环境变量配置:
- CUDA_HOME正确设置为
/usr/local/cuda-12.2
- LD_LIBRARY_PATH包含CUDA库路径
- 环境变量配置生效
- CUDA_HOME正确设置为
-
GPU状态:
- GPU型号:NVIDIA GeForce RTX 4060
- 显存:8188MiB
- 驱动版本:572.83
- CUDA版本:12.8
- GPU温度:45°C
- GPU使用率:0%
- 显存使用:802MiB / 8188MiB
下一步:
- 继续验证CUDA示例程序
- 开始LLaMA-Factory的安装
LLaMA-Factory 安装
1. 基础安装
# 克隆仓库
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
# 进入目录
cd LLaMA-Factory
# 安装依赖
pip install -e ".[torch,metrics]"
# 如果出现冲突,使用以下命令
# pip install --no-deps -e .
安装命令说明:
pip install -e ".[torch,metrics]"
-
什么是
-e
参数?-e
是--editable
的简写,表示"可编辑模式"- 打个比方:这就像是在Word中用"追踪修订"模式编辑文档
- 你可以随时修改代码,改动立即生效,不需要重新安装
- 这对于开发和调试特别有用
-
为什么用
.
?.
表示"当前目录"- 就是告诉pip:“请安装我现在所在文件夹里的这个项目”
- 这里指的就是LLaMA-Factory的根目录
-
[torch,metrics]
是什么意思?- 这是选择安装的"依赖组"
- 就像点餐时可以选择"套餐A"或"套餐B"
- 这里选择了两个基础套餐:
torch
:核心的深度学习框架,就像厨房里的炉灶metrics
:评估工具,就像是菜品品质检测工具
-
为什么只选这两个?
- 这是最基础的配置,保证基本功能可用
- 其他功能(比如分布式训练、量化等)可以后续按需安装
- 避免一次安装太多不需要的组件,就像不会一次买下超市所有东西
-
其他可选的依赖组:
deepspeed
:用于分布式训练,让模型训练更快bitsandbytes
:用于模型量化,让模型变得更小vllm
:提供高速推理服务swanlab
:提供训练过程的可视化界面
-
如果安装出现问题:
- 可以使用
pip install --no-deps -e .
- 这相当于"清洁安装",避免依赖冲突
- 之后可以根据需要手动安装所需的依赖
- 可以使用
2. 安装验证
# 输入命令:验证安装
(llaf_py310) yuuu@DESKTOP-M32KRCT:~/LLaMA-Factory$ llamafactory-cli version
# 输出结果
----------------------------------------------------------
| Welcome to LLaMA Factory, version 0.9.3.dev0 |
| |
| Project page: https://github.com/hiyouga/LLaMA-Factory |
----------------------------------------------------------
验证说明:
- LLaMA-Factory安装成功
- 当前版本为0.9.3.dev0
- 命令行工具可以正常使用