FastNeRF: High-Fidelity Neural Rendering at 200FPS

FastNeRF是一种基于NeRF的实时照片级真实感图像渲染系统,能在GPU上实现200Hz的渲染频率。该方法通过在每个空间位置缓存深度辐射贴图并高效查询来估计像素值,相较于原NeRF算法提速3000倍,同时保持高质量和可扩展性。FastNeRF将原NeRF神经网络拆分为位置依赖和方向依赖两个网络,实现了网络输出的有效缓存。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract

1.NeRF的计算开销太大,因此提出了FastNeRF;这是第一个基于NeRF的系统,能够在GPU上以200Hz的频率渲染高保真照片级真实感图像。

2.它允许(i)在空间中的每个位置紧凑地缓存深度辐射贴图,(ii)使用光线方向有效地查询该贴图,以估计渲染图像中的像素值。大量实验表明,该方法比原NeRF算法快3000倍,比现有的NeRF加速算法至少快一个数量级,同时保持了视觉质量和可扩展性。

Method

1.

 渲染方程为:

        Lo(p,d)是沿方向d离开点p的辐射度;

        fr(p,d,wi)是p位置的反射函数;

        Li(p,wi)描述从ωi方向到达p的光量;

        n对应于p处表面法线的方向。

        评估渲染方程的一种有效方法是使用球谐函数近似fr(p,d,ωi)和Li(p,ωi)。

        FastNeRF将NeRF的神经网络拆分为两个网络:一个网络仅依赖位置p,一个网络仅依赖光线方向d。

        与使用球谐函数评估渲染方程类似,我们的位置相关Fpos和方向相关Fdir函数产生输出,这些输出使用点积进行组合,以获得从方向d观察到的位置p处的颜色值:

 关键的是,这种因式分解将接收\mathbb{R}^{5}中输入的单个函数拆分为接收\mathbb{R}^{3}\mathbb{R}^{2}中输入的两个函数,这使得缓存网络输出成为可能。

 2.        为了加速NeRF,可以尝试通过将F的输出缓存为覆盖场景空间的一组输入来降低F的测试时间成本。然后,可以用计算F所需时间的一小部分计算缓存。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值