Abstract
1.NeRF的计算开销太大,因此提出了FastNeRF;这是第一个基于NeRF的系统,能够在GPU上以200Hz的频率渲染高保真照片级真实感图像。
2.它允许(i)在空间中的每个位置紧凑地缓存深度辐射贴图,(ii)使用光线方向有效地查询该贴图,以估计渲染图像中的像素值。大量实验表明,该方法比原NeRF算法快3000倍,比现有的NeRF加速算法至少快一个数量级,同时保持了视觉质量和可扩展性。
Method
1.
渲染方程为:
Lo(p,d)是沿方向d离开点p的辐射度;
fr(p,d,wi)是p位置的反射函数;
Li(p,wi)描述从ωi方向到达p的光量;
n对应于p处表面法线的方向。
评估渲染方程的一种有效方法是使用球谐函数近似fr(p,d,ωi)和Li(p,ωi)。
FastNeRF将NeRF的神经网络拆分为两个网络:一个网络仅依赖位置p,一个网络仅依赖光线方向d。
与使用球谐函数评估渲染方程类似,我们的位置相关Fpos和方向相关Fdir函数产生输出,这些输出使用点积进行组合,以获得从方向d观察到的位置p处的颜色值:
关键的是,这种因式分解将接收中输入的单个函数拆分为接收
和
中输入的两个函数,这使得缓存网络输出成为可能。
2. 为了加速NeRF,可以尝试通过将F的输出缓存为覆盖场景空间的一组输入来降低F的测试时间成本。然后,可以用计算F所需时间的一小部分计算缓存。