Leetcode.0139 | 单词拆分

本文介绍了一种使用动态规划解决字符串拆分问题的方法,通过给定的字符串和字典,判断字符串是否能被拆分为字典中的一个或多个单词。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给你一个字符串 s 和一个字符串列表 wordDict 作为字典,判定 s 是否可以由空格拆分为一个或多个在字典中出现的单词。

说明:拆分时可以重复使用字典中的单词。

示例

输入: s = "leetcode", wordDict = ["leet", "code"]
输出: true
解释: 返回 true 因为 "leetcode" 可以被拆分成 "leet code"。

输入: s = "applepenapple", wordDict = ["apple", "pen"]
输出: true
解释: 返回 true 因为 "applepenapple" 可以被拆分成 "apple pen apple"。
     注意你可以重复使用字典中的单词。

输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
输出: false

解决方法

本题可以视为背包问题的变种。“单词”可以视为“物品”,“字符串”可以视为“背包”,单词能否组成字符串,就等于问物品能不能把背包装满。拆分时可以重复使用字典中的单词,说明就是一个完全背包。

动态规划。我们定义dp[i]表示字符串 s 的前 i 个字符组成的字符串 s[0..i-1] 是否能被空格拆分成若干个字典中出现的单词。如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j<i)

因此,递推公式可以表示为:

if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。

在递归公式中,判断dp[i]的值的依据为dp[j]是否为true,那么dp[0]一定要为true,否则递归下去后面都都是false了。

对于背包问题,如果求组合数就是外层for循环遍历物品,内层for遍历背包。如果求排列数就是外层for遍历背包,内层for循环遍历物品。

代码实现

class Solution {
    public boolean wordBreak(String s, List<String> wordDict) {
        boolean[] dp = new boolean[s.length() + 1];
        dp[0] = true;
        for(int i = 1;i <= s.length();i ++){
            for(int j = 0; j < i;j ++){
                String word = s.substring(j,i);
                if(wordDict.contains(word) && dp[j]){
                    dp[i] = true;
                }
            }
        }
        return dp[s.length()];
    }
}

备注

java中length属性是对于数组来说的,当用到数组长度时,则用到length;

java中length()是对于String来说的,如果想看字符串的长度,则用length()方法;

java中size()方法是对于泛型集合来说的,如果想知道泛型有多少元素,就调用此方法来查看。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值