最小二乘多项式拟合(曲线拟合)

问题描述

根据N个数据点构造最小二乘多项式拟合。

输入形式

在屏幕上依次输入多项式的次数m,数据点的个数N,和N对数据点的x和y坐标。

输出形式

输出最小二乘多项式和误差。

样例输入

2

4

-3 3

0 1

2 1

4 3

样例输出

[ 0.17846248 -0.19249542 0.85051861]

0.2445252

样例说明

输入:多项式的次数m为2,有4对数据点,后续每行是一对数据点的x和y坐标。

输出:最小二乘多项式为y=0.17846248x**2-0.19249542x+0.85051861,误差(norm2范数,即欧式距离)为0.2445252(保留小数点后7位有效数字)

代码

# 最小二乘多项式拟合(曲线拟合)
import numpy as np
from numpy.linalg import inv, norm


def Input():
    m = int(input())
    n = int(input()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值