在WPS中使用deepseek模型

  1. 背景

随着人工智能技术的发展,大语言模型如ChatGPT、DeepSeek等不断涌现,为提升办公效率提供了新的途径。WPS作为一款广泛使用的办公软件,集成DeepSeek等大模型,能够满足用户在文档编辑、内容创作、数据分析等方面对于智能化的需求,进一步提升办公体验。

  1. 意义
  • 推动办公智能化:WPS与DeepSeek的结合,推动了办公软件向智能化方向发展,为用户提供了更加智能、高效的办公解决方案。
  • 提升用户体验:通过提供更加丰富和智能的功能,满足用户在办公过程中的多样化需求,提升用户对WPS的满意度和忠诚度。
  • 促进技术融合:推动了人工智能技术与办公软件的深度融合,为未来办公软件的发展提供了新的思路和方向。
  • 提升办公效率:DeepSeek可以在WPS中实现校对、文案生成、翻译润色、深度推理等功能,帮助用户快速完成各种办公任务,显著提高工作效率。
  • 功能多样化:除了基本的文本处理功能,DeepSeek还支持聊天、文生图、创作等功能,为用户提供了更多的创作可能性和便捷的交互体验。
  • 个性化定制:用户可以根据自己的需求选择不同的DeepSeek模型(如deepseek-chat或deepseek-reasoner),并进行个性化的配置,以适应不同的工作场景。
  • 降低使用门槛:通过OfficeAI插件,用户无需进行复杂的本地部署,只需简单配置即可在WPS中使用DeepSeek,操作简单便捷。
  1. 本地部署deepseek

相关文章:

【DeepSeek】DeepSeek概述 | 本地部署deepseek

  1. WPS引入deepseek

下载Office AI
以联想应用商店为例,搜索office ai,下载Office AI助手。
在这里插入图片描述

  • 点击我同意此协议,并点击下一步
    在这里插入图片描述

  • 选好适合存储的位置,并点击下一步
    在这里插入图片描述

  • 点击Next
    在这里插入图片描述

  • 点击I Agree
    在这里插入图片描述

  • 下载完成后点击Finish
    在这里插入图片描述

  • 点击完成
    在这里插入图片描述

  • 新建一个文档可以看到会多出一个OfficeAI
    在这里插入图片描述

  • 点击OfficeAI,点击设置
    在这里插入图片描述

  • 点击同意协议后登录微信
    在这里插入图片描述

  • 点击内置模型后面的编辑图标
    在这里插入图片描述

  • 点击大模型设置,点击本地,选择ollama框架,选择模型名就能找到之前部署到本地的deepseek模型,选择好后保存即可
    在这里插入图片描述

### 集成 DeepSeek API 或插件到 WPS 为了在 WPS 中集成 DeepSeek API 或插件,需遵循一系列具体步骤来确保顺利实现功能。这不仅涉及获取必要的访问凭证,还包括选择合适的模型以及完成相应的配置。 #### 获取 API Key 要在 WPS使用 DeepSeek 提供的服务,首先需要获得一个有效的 API Key。这一过程可以通过访问 DeepSeek 官方网站 https://www.deepseek.com/ 并导航至“API 开放平台”页面来完成[^2]。登录现有账户或创建一个新的账户之后,按照指引操作即可取得用于后续开发工作的 API Key。 #### 选择并配置 DeepSeek 模型 一旦拥有了 API Key,下一步就是在 WPS 内部设置 DeepSeek 插件。进入 WPS 后,在“大模型”的下拉列表里挑选适合任务类型的 DeepSeek 版本——例如对于常规的文字创作或是基础的信息检索,“deepseek-chat (DeepSeek-V3)”可能是更合适的选择;而对于那些涉及到深层次逻辑运算或者是高级数据分析的任务,则建议选用“deepseek-reasoner (DeepSeek-R1)”版本[^3]。选定所需型号后,务必记得将先前得到的 API Key 正确输入对应的字段内,并确认保存更改以激活服务。 ```python import requests def get_deepseek_response(api_key, model_name, prompt): url = f"https://api.deepseek.com/v1/models/{model_name}/completions" headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' } data = {"prompt": prompt} response = requests.post(url, json=data, headers=headers) return response.json() ``` 此 Python 函数展示了如何通过 RESTful 接口向指定的 DeepSeek 模型发送请求并接收响应数据。实际应用时可根据项目需求调整参数设定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山语山

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值