[ 热题 HOT 100]---448. 找到所有数组中消失的数字 ---哈希表/原地修改(秀的头皮发麻)

本文介绍了一种在不使用额外空间且时间复杂度为O(n)的情况下,找出整型数组中未出现的所有数字的方法。提供了两种解决方案,一是使用哈希表,二是通过原地修改数组实现。文章详细解释了解题思路,并附上了Java和Python的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 题目描述

给定一个范围在 1 ≤ a[i] ≤ n ( n = 数组大小 ) 的 整型数组,数组中的元素一些出现了两次,另一些只出现一次。

找到所有在 [1, n] 范围之间没有出现在数组中的数字。

您能在不使用额外空间且时间复杂度为O(n)的情况下完成这个任务吗? 你可以假定返回的数组不算在额外空间内。

示例:

输入:
[4,3,2,7,8,2,3,1]

输出:
[5,6]

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-all-numbers-disappeared-in-an-array
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2 解题思路

思路参考力扣官方题解官方题解,两种方法,一种是采用哈希表,另一个是原地修改

  • 解决方法1:使用哈希表
    使用哈希表是我看到这道题最先想到的解决方法,
    就是建立一个哈希表,里面存放已经出现的数字,然后经历一次遍历,再从1到N中去寻找哈希表中不存在的数字,也就是最终结果了

算法:

(1)我们用一个哈希表 hash 来记录我们在数组中遇到的数字。我们也可以用集合 set 来记录,因为我们并不关心数字出现的次数。
(2)然后遍历给定数组的元素,插入到哈希表中,即使哈希表中已经存在某元素,再次插入了也会覆盖
(3)现在我们知道了数组中存在那些数字,只需从1⋯N 范围中找到缺失的数字。
(4)从 1⋯N 检查哈希表中是否存在,若不存在则添加到存放答案的数组中。

复杂度分析

时间复杂度:O(N)。
空间复杂度:O(N)。

  • 解决方法2:原地修改
    哎呦我的天,这个方法就真的很觉,我是真的真的真的想不到…原谅我脑子不够用
    在这里插入图片描述

复杂度分析

时间复杂度:O(N)。
空间复杂度:O(1),因为我们在原地修改数组,没有使用额外的空间。

3 解决代码

    • 解决方法1:使用哈希表《Java代码》
class Solution {
    public List<Integer> findDisappearedNumbers(int[] nums) {
        HashMap<Integer, Boolean> hashTable = new HashMap<Integer, Boolean>(); 
        for(int i = 0; i < nums.length; i++){
            hashTable.put(nums[i], true);
        }
        List<Integer> result = new LinkedList<Integer>();
        for(int i = 1; i < nums.length + 1; i++){
            if(!hashTable.containsKey(i)){
                result.add(i);
            }
        }
        return result;

    }
}
    • 解决方法1:使用哈希表《Java代码》
class Solution:
    def findDisappearedNumbers(self, nums: List[int]) -> List[int]:
        hash_table = {}
        for num in nums:
            hash_table[num] = 1
        result = []
        for num in range(1, len(nums) + 1):
            if num not in hash_table:
                result.append(num)
        return result
  • 解决方法2:原地修改《Java代码》
class Solution {
    public List<Integer> findDisappearedNumbers(int[] nums) {
        for(int i = 0; i < nums.length; i++){
            int newIndex = Math.abs(nums[i]) - 1;
            if(nums[newIndex] > 0){
                nums[newIndex] *= -1;
            }
        }
        List<Integer> result = new LinkedList<>();
        for(int i = 1; i < nums.length + 1; i++){
            if(nums[i - 1] > 0){
                result.add(i);
            }
        }
        return result;

    }
}
  • 解决方法2:原地修改《python3代码》
class Solution:
    def findDisappearedNumbers(self, nums: List[int]) -> List[int]:
        for i in range(0, len(nums)):
            new_index = abs(nums[i]) - 1
            if nums[new_index] > 0:
                nums[new_index] *= -1
        result = []
        for i in range(1, len(nums) + 1):
            if(nums[i - 1]) >0:
                result.append(i)
        return result
        
### C++ 实现 LeetCode Hot 100 题目 #### 计算二进制表示中前 N 数字的汉明重量 为了计算给定整数 `n` 的范围内所有数字的汉明重量(即二进制表示中的 '1' 的数量),可以利用位运算技巧来优化算法效率。当遇到偶数时,其汉明重量等于该数除以二后的汉明重量;奇数则在其前一个数的基础上加一。 ```cpp class Solution { public: vector<int> countBits(int n) { vector<int> ans(n + 1); ans[0] = 0; for (int i = 1; i < n + 1; ++i) { if (i % 2 == 0) { ans[i] = ans[i / 2]; } else { ans[i] = ans[i - 1] + 1; } } return ans; } }; ``` 此方法的时间复杂度为 O(N),空间复杂度同样为 O(N)[^1]。 #### 查找数组消失数字 针对寻找 `[1, n]` 中缺失的正整数这一问,可以通过原地标记的方法,在不额外占用大量内存的情况下完成任务。具体做法是对遍历过的索引位置做标记,最后未被访问的位置对应的索引即为所求解。 ```cpp class Solution { public: vector<int> findDisappearedNumbers(vector<int>& nums) { for (auto& num : nums) { int idx = abs(num) - 1; if (nums[idx] > 0) nums[idx] *= -1; } vector<int> res; for (size_t i = 0; i < nums.size(); ++i) { if (nums[i] > 0) res.push_back(i + 1); } return res; } }; ``` 这种方法巧妙地运用了输入数据本身的特性来进行操作,从而实现了线性的平均时间性能。 #### 寻找两数之和的目标组合 解决经典的 Two Sum 问是通过哈希表加速查找过程的经典案例之一。借助于无序映射结构可以在一次扫描过程中同时记录已读取数值及其对应下标,并即时判断当前处理项是否存在匹配伙伴形成目标总和。 ```cpp class Solution { public: vector<int> twoSum(vector<int>& nums, int target) { unordered_map<int, int> m; for (int i = 0; i < nums.size(); ++i) { if (m.count(target - nums[i])) { return {i, m[target - nums[i]]}; } m[nums[i]] = i; } return {}; } }; ``` 上述代码片段展示了如何高效定位满足条件的一对元素,整体流程仅需单次遍历即可达成目的,显著提升了执行速度[^2]。 #### 处理链表相交节点检测 对于涉及链表的操作而言,双指针技术是一种非常有效的策略。特别是面对环形或交叉路径等问景时尤为适用。下面的例子说明了怎样确定两条可能相互连接的单向列表之间的交汇点: ```cpp ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) { auto p1 = headA, p2 = headB; while(p1 != p2){ p1 = !p1 ? headB : p1->next; p2 = !p2 ? headA : p2->next; } return p1; } ``` 这段程序采用交替前进的方式让两个游走者最终同步到达相遇之处或是共同终点 null ,以此判定是否有公共部分存在[^3].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值