Yarn7 任务推测执行
更多整理都在我的github上:Auraros欢迎大家。
任务的推测执行
1.作业完成时间取决于最慢的任务完成时间
一个作业由若干个Map任务和Reduce任务构成。因硬件老化、软件Bug等,某些任务可能运行非常慢。
典型案例:系统中有99%的Map任务都完成了,只有少数几个Map老是进度很慢,完不成,怎么办?
2.推测执行机制
发现拖后腿的任务,比如某个任务运行速度远慢于任务平均速度。为拖后腿任务启动一个备份任务,同时运行。谁先运行完,则采用谁的结果
3.执行推测任务的前提条件
(1)每个Task只能有一个备份任务;
(2)当前Job已完成的Task必须不小于0.05(5%)
(3)开启推测执行参数设置。Hadoop2.7.2 mapred-site.xml文件中默认是打开的。
# mapred-site.xml
<property>
<name>mapreduce.map.speculative</name>
<value>true</value>
<description>If true, then multiple instances of some map tasks may be executed in parallel.
</description>
</property>
<property>
<name>mapreduce.reduce.speculative</name>
<value>true</value>
<description>If true, then multiple instances of some reduce tasks may be executed in parallel.
</description>
</property>
不能启用推测执行机制情况
(1)任务间存在严重的负载倾斜;
(2)特殊任务,比如任务向数据库中写数据
5. 推测执行算法的原理
某一时刻,任务T的执行进度为progress,则可通过一定的算法推出该任务的最终完成时刻estimateEndTime。另一个方面,如果此时为该任务启动一个备份任务,则可以推断它可能完成时刻estimateEndTime’,于是可以得到以下几个公式:
e
s
t
i
m
a
t
e
E
n
d
T
i
m
e
=
e
s
t
m
a
t
e
R
u
n
T
i
m
e
+
t
a
s
k
S
t
a
r
t
T
i
m
e
estimateEndTime = estmateRunTime + taskStartTime
estimateEndTime=estmateRunTime+taskStartTime
推 测 执 行 完 成 时 刻 60 = 推 测 运 行 时 间 ( 60 s ) + 任 务 启 动 时 刻 ( 0 ) 推测执行完成时刻 60 = 推测运行时间(60s)+任务启动时刻(0) 推测执行完成时刻60=推测运行时间(60s)+任务启动时刻(0)
e s t i m a t e R u n T i m e = ( c u r r e n t T i m e S t a m p + t a s k S t a r t T i m e ) / p r o g r e s s estimateRunTime = (currentTimeStamp + taskStartTime)/progress estimateRunTime=(currentTimeStamp+taskStartTime)/progress
推 测 运 行 时 间 60 s = ( 当 前 时 刻 6 − + 任 务 启 动 时 刻 0 ) / 任 务 运 行 比 例 ( 10 推测运行时间 60s = (当前时刻6 - +任务启动时刻0)/任务运行比例(10%) 推测运行时间60s=(当前时刻6−+任务启动时刻0)/任务运行比例(10
e s t i m a t e E n d T i m e = ( c u r r e n t T i m e S t a m p + a v e r a g e R u n T i m e ) estimateEndTime = (currentTimeStamp + averageRunTime) estimateEndTime=(currentTimeStamp+averageRunTime)
备 份 任 务 推 测 完 成 时 刻 16 = ( 当 前 时 刻 6 + 运 行 完 成 任 务 的 平 均 时 间 ) 备份任务推测完成时刻16 = (当前时刻6 + 运行完成任务的平均时间) 备份任务推测完成时刻16=(当前时刻6+运行完成任务的平均时间)
总结:
- MR总是选择(estimateEndTime - estimateEndTime`)差值最大的任务,并为之启动备份任务
- 为了防止大量任务同时启动备份造成的资源浪费,MR为每个作业设置了同时启动的备份任务数目上限
- 推测执行机制实际上采用了经典的优化算法:以空间换时间,它同时启动多个相同任务处理相同的数据,并让这些任务竞争以缩短数据处理时间,显然,这种方法需要占用更多的资源,在集群资源紧缺的情况下,应合理使用该机制,争取在多用少量资源的情况下,减少作业的计算时间。