Yarn7 任务推测执行

本文探讨了YARN中任务推测执行机制的工作原理及其应用场景。针对部分任务运行缓慢的情况,通过启动备份任务来提高整体作业的完成效率。文章详细解释了推测执行的条件、算法原理及其实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Yarn7 任务推测执行

更多整理都在我的github上:Auraros欢迎大家。

任务的推测执行

1.作业完成时间取决于最慢的任务完成时间

一个作业由若干个Map任务和Reduce任务构成。因硬件老化、软件Bug等,某些任务可能运行非常慢。

典型案例:系统中有99%的Map任务都完成了,只有少数几个Map老是进度很慢,完不成,怎么办?

2.推测执行机制

发现拖后腿的任务,比如某个任务运行速度远慢于任务平均速度。为拖后腿任务启动一个备份任务,同时运行。谁先运行完,则采用谁的结果

3.执行推测任务的前提条件

(1)每个Task只能有一个备份任务; 
(2)当前Job已完成的Task必须不小于0.05(5%) 
(3)开启推测执行参数设置。Hadoop2.7.2 mapred-site.xml文件中默认是打开的。
# mapred-site.xml 
<property> 
    <name>mapreduce.map.speculative</name> 
    <value>true</value> 
    <description>If true, then multiple instances of some map tasks may be executed in parallel.
    </description> 
</property> 
<property> 
    <name>mapreduce.reduce.speculative</name> 
    <value>true</value> 
    <description>If true, then multiple instances of some reduce tasks may be executed in parallel.
    </description>
</property>

不能启用推测执行机制情况

(1)任务间存在严重的负载倾斜; 
(2)特殊任务,比如任务向数据库中写数据

5. 推测执行算法的原理

某一时刻,任务T的执行进度为progress,则可通过一定的算法推出该任务的最终完成时刻estimateEndTime。另一个方面,如果此时为该任务启动一个备份任务,则可以推断它可能完成时刻estimateEndTime’,于是可以得到以下几个公式:
e s t i m a t e E n d T i m e = e s t m a t e R u n T i m e + t a s k S t a r t T i m e estimateEndTime = estmateRunTime + taskStartTime estimateEndTime=estmateRunTime+taskStartTime

推 测 执 行 完 成 时 刻 60 = 推 测 运 行 时 间 ( 60 s ) + 任 务 启 动 时 刻 ( 0 ) 推测执行完成时刻 60 = 推测运行时间(60s)+任务启动时刻(0) 60=60s+0

e s t i m a t e R u n T i m e = ( c u r r e n t T i m e S t a m p + t a s k S t a r t T i m e ) / p r o g r e s s estimateRunTime = (currentTimeStamp + taskStartTime)/progress estimateRunTime=(currentTimeStamp+taskStartTime)/progress

推 测 运 行 时 间 60 s = ( 当 前 时 刻 6 − + 任 务 启 动 时 刻 0 ) / 任 务 运 行 比 例 ( 10 推测运行时间 60s = (当前时刻6 - +任务启动时刻0)/任务运行比例(10%) 60s=(6+0)/10

e s t i m a t e E n d T i m e = ( c u r r e n t T i m e S t a m p + a v e r a g e R u n T i m e ) estimateEndTime = (currentTimeStamp + averageRunTime) estimateEndTime=(currentTimeStamp+averageRunTime)

备 份 任 务 推 测 完 成 时 刻 16 = ( 当 前 时 刻 6 + 运 行 完 成 任 务 的 平 均 时 间 ) 备份任务推测完成时刻16 = (当前时刻6 + 运行完成任务的平均时间) 16=(6+)

总结:

  1. MR总是选择(estimateEndTime - estimateEndTime`)差值最大的任务,并为之启动备份任务
  2. 为了防止大量任务同时启动备份造成的资源浪费,MR为每个作业设置了同时启动的备份任务数目上限
  3. 推测执行机制实际上采用了经典的优化算法:以空间换时间,它同时启动多个相同任务处理相同的数据,并让这些任务竞争以缩短数据处理时间,显然,这种方法需要占用更多的资源,在集群资源紧缺的情况下,应合理使用该机制,争取在多用少量资源的情况下,减少作业的计算时间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值