tsfresh

本文档介绍了使用tsfresh库进行时序特征提取时遇到的四个问题:KeyError、AssertionError、RuntimeError和大量特征过滤。错误解决方案包括正确访问数据索引、确保y值为Series、在main函数中处理多进程以及调整过滤参数以减少内存消耗。通过这些解决方法,可以更好地利用tsfresh进行时序数据分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tsfresh官方文档
阅读之后可以快速上手提取时序特征

提取加过滤

features_filtered_direct = extract_relevant_features(df_timeseries, y,
	fdr_level = 0.002, column_id='stay_id', column_sort='time')

问题1: keyerror (‘stay_id’, ‘y’)

df_timeseries是我的时序数据
df[‘stay_id’, ‘y

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值