一、感受野
感受野:卷积神经网络中每个网络层输出的特征图中的单个元素映射回原始输入特征中的区域大小,网络层越深,其输出特征的元素对应感受野越大。可以这么去描述感受野:网络层输出特征图上的一个元素点,由原始输入中多大区域映射而来,其感受野就是多大。
1.全连接网络与卷积神经网络
对于全连接网络而言,其输出中的每一个元素都受到输入特征中所有元素的影响,而对于卷积神经网络而言,利用卷积核与输入特征之间的互相关操作提取特征,输出特征中的每一个元素由卷积核在输入特征上的一次移动得到,而卷积核的每次移动均是与输入中与之对应的局部区域进行运算,既输出中的每个元素只由输入中的局部区域影响,此处所说的局部区域的大小也就是网络层输出特征中元素的感受野。
此处对全连接网络与卷积神经网络进行实例对比(网络均只有一层):
1)全连接网络:可看到共输出5个元素,每个元素都受到输入中的所有元素影响。
2)卷积神经网络:可看到输出中的每个元素都由(3,3)的卷积核对应输入中(3,3)的局部区域“加权求和”得到,所以该输出的特征元素对应到输入中的区域大小就是3×3,既其感受野大小为3×3。