细说卷积神经网络(CNN)中所谓的“感受野”(Receptive Field)

本文深入探讨了卷积神经网络(CNN)中的感受野概念,解释了感受野如何随网络深度增加而扩大,以及如何通过计算方法确定各层感受野的大小。并举例说明了不同网络结构下感受野的计算过程,强调了感受野在特征提取和网络设计中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、感受野

感受野:卷积神经网络中每个网络层输出的特征图中的单个元素映射回原始输入特征中的区域大小,网络层越深,其输出特征的元素对应感受野越大。可以这么去描述感受野:网络层输出特征图上的一个元素点,由原始输入中多大区域映射而来,其感受野就是多大。

1.全连接网络与卷积神经网络

对于全连接网络而言,其输出中的每一个元素都受到输入特征中所有元素的影响,而对于卷积神经网络而言,利用卷积核与输入特征之间的互相关操作提取特征,输出特征中的每一个元素由卷积核在输入特征上的一次移动得到,而卷积核的每次移动均是与输入中与之对应的局部区域进行运算,既输出中的每个元素只由输入中的局部区域影响,此处所说的局部区域的大小也就是网络层输出特征中元素的感受野。
此处对全连接网络与卷积神经网络进行实例对比(网络均只有一层):
1)全连接网络:可看到共输出5个元素,每个元素都受到输入中的所有元素影响。
在这里插入图片描述
2)卷积神经网络:可看到输出中的每个元素都由(3,3)的卷积核对应输入中(3,3)的局部区域“加权求和”得到,所以该输出的特征元素对应到输入中的区域大小就是3×3,既其感受野大小为3×3。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NorthSmile

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值