
机器学习 & 大模型
文章平均质量分 86
机器学习 & 大模型
小毕超
人工智能、微服务架构领域专研者,国内软考高级系统架构设计师职称,国际TOGAF鉴定级企业架构设计师、PMP项目管理师,华为云·云享专家,CSDN博客专家。曾获“联想杯”移动互联比赛 江苏省一和国二成绩,第四届全国应用型人才比赛“兄弟连杯”国一成绩。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
vLLM + Qwen3-Coder-30B-A3B-Instruct + Cline 构建私服级开发辅助引擎
本文介绍了如何利用开源大模型Qwen3-Coder-30B构建私有化AI编程助手,解决企业代码隐私与数据安全问题。通过vLLM框架部署Qwen3-Coder-30B模型,实现本地化代码生成服务,并使用Cline工具连接私服模型进行开发测试。原创 2025-08-09 10:00:00 · 218 阅读 · 0 评论 -
LangChain + MCP 构建带可视化图表功能的ChatBI智能体
本文介绍了基于LangChain和MCP技术构建支持可视化图表的ChatBI智能体。实验采用美国COVID-19县级疫情数据,通过FastMCP实现数据查询服务,结合ModelScope的图表服务完成数据可视化。系统架构包含数据查询MCP Server、图表生成服务和GPT-4.1大模型,实现了从自然语言查询到可视化呈现的完整流程。关键技术点包括:MySQL数据存储、MCP服务封装、多工具协同调用等,最终能够根据用户提问自动生成饼图、柱状图等可视化结果。原创 2025-07-26 12:39:22 · 1021 阅读 · 0 评论 -
YOLO 家族全新一代 YOLO v13 上手使用及微调实验
YOLOv13是目标检测领域的最新成果,继承了YOLO系列的速度与精度优势并进行了多项创新。其核心创新是引入超图自适应相关增强机制(HyperACE),通过可学习的超边构建方式捕捉物体间的复杂关系,突破传统卷积和自注意力的限制。该模型包含Nano、Small、Large和XLarge四种版本,其中Nano版本在MS COCO数据集上达到41.6% mAP,仅需6.4G FLOPs,CPU推理速度可达25FPS。文章还详细介绍了如何快速使用YOLOv13进行目标检测,以及通过微调训练自定义人脸检测模型的方法,原创 2025-07-12 12:41:06 · 1060 阅读 · 0 评论 -
LLM 安全防护解决方案,使用 Roberta 训练 LLM 提示词注入攻击判决模型
本文探讨了针对大型语言模型的提示词注入攻击方法及防御策略。首先介绍了提示词攻击的基本原理和类型,包括直接、间接、代码和递归注入等攻击手段,以及可能造成的信息泄露、权限绕过等危害。然后提出了一种基于BERT模型的防御方案,通过微调训练重塑模型对自然语言指令的敏感性,构建提示词注入攻击判决模型。文章详细描述了训练语料生成过程,使用GPT-4.1生成5000条涵盖多个领域的攻击示例,并分析了数据集的Token分布情况。最后对数据集进行划分,将10%数据作为验证集用于模型评估。该研究为防范提示词注入攻击提供了实用的原创 2025-06-28 10:00:00 · 729 阅读 · 0 评论 -
LangChain + MCP + vLLM + Qwen3-32B 构建本地私有化智能体应用
本文介绍了基于LangChain+vLLM+Qwen3-32B+MCP技术栈构建的本地ChatBI问答系统实现方案。主要内容包括: 使用vLLM部署Qwen3-32B大模型API服务;构建DB MCP Server实现数据库交互功能;LangChain Agent 智能体构建。该方案通过大模型本地化部署和MCP智能体的结合,实现了私有化智能数据查询助手。原创 2025-06-14 10:00:00 · 945 阅读 · 0 评论 -
Spring AI 基于 RAG 构建本地知识库问答助手
Spring AI 提供了对 RAG(检索增强生成)的支持,通过向量检索增强技术,将本地私有化知识内容嵌入并存储到向量库中,作为知识库。当用户提问时,通过向量相似度检索召回相关知识,并将其作为上下文背景组装到 Prompt 中,从而增强大模型对私有知识的感知能力,减少幻觉。Spring AI 提供了多种文档读取器(如 JSON、PDF、Markdown 等)和文本拆分工具,并支持多种向量库。本文介绍了如何在 Spring Boot 项目中搭建 RAG 流程,使用 OpenAI 的 GPT-4.1 和 tex原创 2025-05-24 10:00:00 · 916 阅读 · 0 评论 -
Spring AI 本地直接运行 Onnx Embedding 模型,结合 Milvus 实现语义向量的存储和检索
本文介绍了如何将 Huggingface 的 Embedding 模型转换为 Onnx 格式,并在 Java 环境中通过 SpringAI 本地运行。首先,使用 optimum-cli 工具将模型转换为 Onnx 格式,该过程依赖 Python 环境。转换完成后,Java 端无需再依赖 Python 环境。接着,通过 SpringBoot 项目引入相关依赖,配置 TransformersEmbeddingModel 以直接运行 Onnx 格式的 Embedding 模型。这种方法使得 Java 应用能够独立原创 2025-05-17 10:00:00 · 776 阅读 · 0 评论 -
Qwen3 性价比新王 Qwen3-30B-A3B 本地私有化部署,可灵活切换思考模式
Qwen3 是 Qwen 系列大型语言模型的最新成员。该系列共包含8款模型,2款参数30B、235B的混合专家模型和6款参数0.6B、1.7B、4B、8B、14B、32B的稠密模型,每款模型均获得同尺寸开源模型的最佳性能。原创 2025-05-05 19:00:00 · 4135 阅读 · 0 评论 -
Spring AI + bge-large + Milvus 构建私有化语义内容检索方案
Spring AI是Spring官方社区项目,旨在简化Java AI应用开发,让Java开发者像使用Spring开发普通应用一样开发AI应用。本文基于Spring AI + bge-large + Milvus 构建私有化语义内容检索方案。原创 2025-04-26 08:00:00 · 1529 阅读 · 0 评论 -
Spring AI MCP Client + DeepSeek R1 搭建自定义可扩展的AI助手服务
MCP 由 Anthropic 推出的一种开放标准协议,旨在统一大模型(LLM)与外部数据源和工具之间的通信方式。通过 MCP 协议,开发者可以更高效地实现 AI 模型与外部资源的集成,从而提升应用的智能化和上下文感知能力。原创 2025-04-19 08:00:00 · 3088 阅读 · 7 评论 -
Spring AI MCP Server + Cline 快速搭建一个数据库 ChatBi 助手
Spring AI MCP 是基于 Spring AI 集成扩展了 MCP Java SDK,让开发者在 Spring 体系下可以快速开发 MCP Server 端或 MCP Client 端。原创 2025-03-30 21:39:45 · 3326 阅读 · 1 评论 -
QWQ-32B 本地私有化部署,性能媲美DeepSeek-R1满血版
QWQ-32B是阿里巴巴最新开源的一款新型推理模型,规模仅拥有320亿参数,但在多项基准测试中,性能几乎媲美 DeepSeek-R1 满血版,甚至某些测试中超越了 DeepSeek-R1 满血版。原创 2025-03-15 08:00:00 · 971 阅读 · 0 评论 -
vLLM + Open-WebUI 本地私有化部署 DeepSeek-R1-Distill-Qwen-32B 方案
vLLM是一个快速且易于使用的大模型库,专为大模型的推理和部署而设计。可以无缝集成 HuggingFace、Modelscope 上的模型。Open WebUI是一个开源的、可扩展的、功能丰富的自托管AI平台,旨在完全离线运行。它主要设计用于与大型语言模型(LLMs)进行交互,支持多种模型和API,提供了直观的图形用户界面,使得用户可以更方便地管理和运行模型。通过 vLLM+Open WebUI快速部署DeepSeek-R1-Distill-Qwen-14B模型。原创 2025-03-07 16:58:59 · 3857 阅读 · 0 评论 -
实时目标检测新潮流 YOLO V12 整体介绍及微调训练
YOLO v12是YOLO系列中最新且最具创新性的版本,它将注意力机制引入到YOLO框架中,在保持高速推理的同时又显著提升了检测精度。成功打破了传统基于CNN在速度与性能之间的权衡困境。原创 2025-03-02 08:00:00 · 3254 阅读 · 0 评论 -
利用 vLLM 优化部署私有化大模型,让推理速度飞起
vLLM是一个快速且易于使用的大模型库,专为大模型的推理和部署而设计。可以无缝集成 HuggingFace、Modelscope 上的模型。在性能优化上 vLLM 通过引入创新的架构和算法,如Paged Attention、动态张量并行等,减少计算开销和提高吞吐量,实现推理过程的高效,从而加速LLM在推理阶段的性能。一定程度上解决了传统大模型在硬件资源有限情况下的性能瓶颈。原创 2025-01-21 20:00:00 · 3178 阅读 · 0 评论 -
基于 DINOv2 模型实现图搜图相似度检索任务
DINOv2是由Meta AI开发的第二代自监督视觉变换器模型,采用 Vision Transformer (ViT) 架构 。其核心特点是在无需人工标签的情况下,通过自监督学习技术,从海量无标注图像中学习有意义的视觉特征表示,类似于 NLP 领域的自监督 Base 模型,DINOv2 已经具有了对图像的理解能力,和强大的图像特征提取能力,因此它可以作为几乎所有计算机视觉任务的骨干模型。原创 2024-12-28 15:48:53 · 1929 阅读 · 0 评论 -
基于 Roberta 微调训练句子语义等价识别任务
句子语义等价识别任务,说白了,就是让模型来判断两个句子是不是在说同一个意思。就像我们人类有时候会说两句话来表达同一个想法。本文基于开源的 hfl/chinese-roberta-wwm-ext 模型,微调训练句子语义等价识别任务。原创 2024-12-14 08:00:00 · 586 阅读 · 0 评论 -
使用Numpy从零实现神经网络前向传播、反向传播、迭代训练等主要过程
本文从零开始实现了一个简单的神经网络,包括前向传播、反向传播和迭代训练过程。通过手动计算梯度并更新权重和偏置,最终实现了对输入数据的预测,并展示了损失函数随训练过程的变化。整个过程展现了神经网络的基本原理和实现方法。原创 2024-12-01 13:08:22 · 1397 阅读 · 0 评论 -
基于 PyTorch 从零手搓一个GPT Transformer 对话大模型
本文仅使用 PyTorch ,从零构建网络结构、构建词表、训练一个 GPT 对话模型。带你体验如何从0到1实现一个自定义的对话模型。模型整体以 Transformer Only Decoder 作为核心架构,由多个相同的层堆叠而成,每个层包括自注意力机制、位置编码和前馈神经网络。原创 2024-11-10 10:22:49 · 3259 阅读 · 8 评论 -
RT-DETR 基于Transformer的目标检测模型介绍及微调训练
RT-DETR是基于Transformer的目标检测模型,DETR的基础上采用了高效的混合编码器和IoU感知,有效降低了计算成本、提高了检测精度。原创 2024-11-03 14:26:42 · 3885 阅读 · 0 评论 -
基于 Roberta Lora 微调训练 搜索内容相关性判断模型
搜索内容相关性任务是指评估用户查询(`Query`)与搜索引擎返回的文档或信息(`Document`)之间的匹配程度。原创 2024-10-20 20:27:48 · 1169 阅读 · 0 评论 -
使用 YOLO V11 Fine-Tuning 训练自定义的目标检测模型
YOLOv11 在 YOLOv8 基础上进行了重要改进,同样支持全方位的视觉 AI 任务,包括检测、分割、姿态估计、跟踪和分类。它继续采用了卷积神经网络设计,充分利用了最新的计算能力,以提高检测效率和降低延迟。在实际应用中,无论是物体识别、跟踪还是图像分割,都展现出了卓越的性能。原创 2024-09-30 17:45:09 · 4871 阅读 · 0 评论 -
基于 Qwen2.5-0.5B 微调训练 Ner 命名实体识别任务
Qwen2.5 是 Qwen 大型语言模型的最新系列,参数范围从 0.5B 到 72B 不等。大大提高了编码和数学能力。在指令跟随、生成长文本(超过 8K 个标记)、理解结构化数据(例如表格)以及生成结构化输出(尤其是 JSON)方面有了显著改进。原创 2024-09-30 10:24:55 · 6001 阅读 · 4 评论 -
基于 Qwen2-1.5B Lora 微调训练医疗问答任务
Qwen是阿里巴巴集团Qwen团队研发的大语言模型和大型多模态模型系列。Qwen2 是 Qwen1.5 的重大升级。无论是语言模型还是多模态模型,均在大规模多语言和多模态数据上进行预训练,并通过高质量数据进行后期微调以贴近人类偏好。原创 2024-09-21 13:11:52 · 1502 阅读 · 7 评论 -
使用 VisionTransformer(VIT) FineTune 训练驾驶员行为状态识别模型
VIT模型是一种基于Transformer架构的计算机视觉模型,它利用Transformer的自注意力机制来捕捉图像中的长距离依赖关系,使得在多个图像识别任务上取得了与卷积神经网络(CNN)相媲美的性能,甚至有所超越,同时具有更好的迁移能力。原创 2024-09-07 08:00:00 · 1455 阅读 · 0 评论 -
Supervision 结合 YOLO V8 玩爆各种计算机视觉处理任务
Supervision是一个针对于计算机视觉各种任务的框架工具,为用户了提供便捷高效的视觉处理方法,可以轻松处理数据集或直观地展现检测结果。另外他还提供了多种绘制检测结果的方式,并且还提供了统计特定区域内检测跟踪、越线数量统计、切片推理、轨迹平滑等不同计算机视觉任务的方法封装。可谓是在CV领域,有了它你可以少写很多展现和计算代码。原创 2024-08-09 17:18:43 · 2855 阅读 · 0 评论 -
基于 YOLO V10 Fine-Tuning 训练自定义的目标检测模型
YOLO-V10 由清华大学提供,采用无 NMS 训练和效率-精度驱动架构,提供目前最先进的性能和延迟。原创 2024-07-30 11:49:24 · 2451 阅读 · 0 评论 -
Spring Cloud Alibaba AI 介绍及使用
Spring Cloud Alibaba AI 是阿里以 Spring AI 为基础,并在此基础上提供阿里云通义系列大模型全面适配,让用户在 5 分钟内开发基于通义大模型的 Java AI 应用。原创 2024-07-10 19:20:24 · 1735 阅读 · 0 评论 -
OpenCV 调用自定义训练的 YOLO-V8 Onnx 模型
Onnx 格式是一种开放格式,用于表示深度学习模型。目的是为了促进不同深度学习框架和工具之间的模型互操作性。通过Onnx,开发人员可以更容易地在不同的深度学习框架之间转换模型。本文首先将自定义的 YOLO-V8 Pytorch 模型转为 Onnx 模型,然后通过 OpenCV 调用 Onnx 模型,进行运算推理。原创 2024-06-30 10:14:22 · 5170 阅读 · 2 评论 -
基于 YOLO V8 Cls Fine-Tuning 训练花卉图像分类模型
本篇文章使用数千张花卉照片作为数据集,共分为5个分类:daisy、dandelion、roses、sunflowers、tulips。使用 yolov8n-cls 模型 Fine-Tuning 训练花卉图像分类模型。原创 2024-04-13 17:31:58 · 2044 阅读 · 2 评论 -
基于 YOLO V8 Pose Fine-Tuning 训练 15 点人脸关键点检测模型
YOLO V8 是由 2023 年 ultralytics 公司开源的发布,是结合了前几代 YOLO 的融合改进版。YOLO V8 支持全方位的视觉 AI 任务,包括检测、分割、姿态估计、跟踪和分类。并且在速度和准确性方面具有无与伦比的性能。能够应用在各种对速度和精度要求较高的应用和领域。文本基于 YOLO V8 训练15点人脸关键点检测模型原创 2024-04-01 17:33:06 · 3857 阅读 · 4 评论 -
基于 YOLO V8 Fine-Tuning 训练自定义的目标检测模型
YOLO V8 是由 2023 年 ultralytics 公司开源的发布,是结合了前几代 YOLO 的融合改进版。YOLO V8 支持全方位的视觉 AI 任务,包括检测、分割、姿态估计、跟踪和分类。并且在速度和准确性方面具有无与伦比的性能。能够应用在各种对速度和精度要求较高的应用和领域。原创 2024-03-29 14:58:25 · 2971 阅读 · 2 评论 -
Milvus 向量数据库介绍及使用
Milvus 于 2019 年创建,其目标只有一个:存储、索引和管理由深度神经网络和其他机器学习 (ML) 模型生成的大量嵌入向量。它具备高可用、高性能、易拓展的特点,用于海量向量数据的实时召回。原创 2024-03-21 16:21:34 · 8787 阅读 · 4 评论 -
无需 GPU 服务器,借助 OpenRouter 零成本搭建自己的大模型助手
大型模型的出现为许多领域带来了革命性的变化,从自然语言处理到计算机视觉,甚至是医学和金融领域。然而,对于许多开发者来说,大多数情况下,使用这些模型需要拥有一台配备高性能GPU的服务器,而这往往是一项昂贵的投资。而 OpenRouter 为使用者提供了部分开源模型的实现,可以通过API免费使用,主要聚焦在7B规模大小的模型,比如谷歌的 gemma-7b ,Mistral AI 的 mistral-7b-instruct,一定程度避免了自己去部署大模型的成本。原创 2024-03-08 16:57:37 · 24398 阅读 · 0 评论 -
FastSAM 分割一切 速度可以比 SAM 快 50 倍
MetaAI 提出能够分割一切的视觉基础大模型SAM可以做到很好的分割效果,并且不限于场景、不限于目标,为探索视觉大模型提供了一个新的方向,可以说是视觉领域通用大模型,而FastSAM`为该任务提供了一套实时的解决方案,进一步推动了分割一切模型的实际应用和发展。原创 2023-12-17 16:34:23 · 839 阅读 · 0 评论 -
盘点 Pytorch Vision 中的图像预训练模型
PyTorch Vision 库提供了许多经过预训练的视觉模型,包括图像分类、目标检测、语义分割等。原创 2023-12-16 15:54:50 · 1159 阅读 · 0 评论 -
Python 调用 Halcon 模板匹配实现目标定位
Halcon 被广泛用于工业视觉和机器视觉应用中,其强大的功能和灵活性使其成为许多开发人员和研究人员的首选选择,同时支持多种编程语言,包括 C、C++、C# 和 Python 等,本文使用Python 调用 Halcon 模板匹配实现目标定位。原创 2023-12-10 20:12:30 · 1334 阅读 · 0 评论 -
Pytorch 基于 deeplabv3_resnet50 迁移训练自己的图像语义分割模型
图像语义分割是计算机视觉领域的一项重要任务,旨在将图像中的每个像素分配到其所属的语义类别,从而实现对图像内容的细粒度理解。与目标检测不同,图像语义分割要求对图像中的每个像素进行分类,而不仅仅是确定物体的边界框。deeplabv3_resnet50 就是一个常用的语义分割模型,它巧妙地将两个强大的神经网络架构融合在一起,为像素级别的图像理解提供了强大的解决方案。原创 2023-11-27 17:05:03 · 2654 阅读 · 3 评论 -
基于 chinese-roberta-wwm-ext 微调训练中文命名实体识别任务
基于 chinese-roberta-wwm-ext 微调训练中文命名实体识别任务。原创 2023-10-11 17:48:24 · 9374 阅读 · 12 评论 -
ChatGLM2-6B Lora 微调训练医疗问答任务
LoRA 微调在原始 PLM 增加一个旁路,一般是在 transformer 层,做一个降维再升维的操作,模型的输入输出维度不变,来模拟 intrinsic rank。该方式可以大大降低训练的参数量,而性能可以优于其它参数高效微调方法,甚至和全参数微调(Fine-Tuning)持平甚至超过。原创 2023-09-16 21:51:57 · 2551 阅读 · 13 评论