对称矩阵归一化的实现

今天看到代码,归一化是这么写的:
mat.dot(dInvSqrtMat).transpose().dot(dInvSqrtMat).tocoo()

mat是一个对称矩阵,dInvSqrtMat是度矩阵,一直想不明白,推导了一下:

原代码逻辑为第一行:
A^=(AD−12)TD−12=(D−12)TATD−12=D−12AD−12 \hat{A} = (AD^{-\frac{1}{2}})^TD^{-\frac{1}{2}} \\ = (D^{-\frac{1}{2}})^T A^T D^{-\frac{1}{2}} \\ =D^{-\frac{1}{2}} A D^{-\frac{1}{2}} A^=(AD21)TD21=(D21)TATD21=D21AD21

其中,可使用的条件为:A满足对称矩阵,D满足E的特性。
(AB)T=BTATET=EA是对称矩阵,AT=A (AB)^T = B^TA^T \\ E^T = E \\ A是对称矩阵,A^T = A \\ (AB)T=BTATET=EA是对称矩阵,AT=A

这么写的目的是为了:结合稀疏矩阵的计算特性,保证结果矩阵的对称性以及计算效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值