代码随想录算法训练营第十七天 |【二叉树】530.二叉搜索树的最小绝对差、501.二叉搜索树中的众数、236. 二叉树的最近公共祖先

代码随想录算法训练营第十七天 |【二叉树】530.二叉搜索树的最小绝对差、501.二叉搜索树中的众数、236. 二叉树的最近公共祖先

530.二叉搜索树的最小绝对差

力扣题目链接(opens new window)

给你一棵所有节点为非负值的二叉搜索树,请你计算树中任意两节点的差的绝对值的最小值。

示例:

530二叉搜索树的最小绝对差

提示:树中至少有 2 个节点。

思路
  • 注意是二叉搜索树,二叉搜索树可是有序的。
  • 遇到在二叉搜索树上求什么最值啊,差值之类的,就把它想成在一个有序数组上求最值,求差值,这样就简单多了。
看完代码随想录之后的想法
递归

二叉搜索树采用中序遍历,其实就是一个有序数组。

在一个有序数组上求两个数最小差值,,就是把二叉搜索树转换成有序数组,然后遍历一遍数组,就统计出来最小差值了。

递归三步曲分析:

  • 明确递归函数的参数和返回值

参数:当前传入节点。 返回值:无

代码如下:

void traversal(TreeNode* root)
  • 明确终止条件

递归的过程中依然是遇到空节点了为终止

代码如下:

if (root == NULL) return;
  • 明确单层递归的逻辑

中序遍历。

代码如下:

 traversal(root->left);
    vec.push_back(root->val); // 将二叉搜索树转换为有序数组
    traversal(root->right);
  • 本题整体递归代码如下:

    class Solution {
    private:
    vector<int> vec;
    void traversal(TreeNode* root) {
        if (root == NULL) return;
        traversal(root->left);
        vec.push_back(root->val); // 将二叉搜索树转换为有序数组
        traversal(root->right);
    }
    public:
        int getMinimumDifference(TreeNode* root) {
            vec.clear();
            traversal(root);
            if (vec.size() < 2) return 0;
            int result = INT_MAX;
            for (int i = 1; i < vec.size(); i++) { // 统计有序数组的最小差值
                result = min(result, vec[i] - vec[i-1]);
            }
            return result;
        }
    };
    
  • 其实在二叉搜素树中序遍历的过程中,我们就可以直接计算了。 需要用一个pre节点记录一下cur节点的前一个节点。代码如下:

    class Solution {
    private:
    int result = INT_MAX;
    TreeNode* pre = NULL;
    void traversal(TreeNode* cur) {
        if (cur == NULL) return;
        traversal(cur->left);   // 左
        if (pre != NULL){       // 中
            result = min(result, cur->val - pre->val);
        }
        pre = cur; // 记录前一个
        traversal(cur->right);  // 右
    }
    public:
        int getMinimumDifference(TreeNode* root) {
            traversal(root);
            return result;
        }
    };
    
迭代

中序遍历的迭代法

代码如下:

class Solution {
public:
    int getMinimumDifference(TreeNode* root) {
        stack<TreeNode*> st;
        TreeNode* cur = root;
        TreeNode* pre = NULL;
        int result = INT_MAX;
        while (cur != NULL || !st.empty()) {
            if (cur != NULL) { // 指针来访问节点,访问到最底层
                st.push(cur); // 将访问的节点放进栈
                cur = cur->left;                // 左
            } else {
                cur = st.top();
                st.pop();
                if (pre != NULL) {              // 中
                    result = min(result, cur->val - pre->val);
                }
                pre = cur;
                cur = cur->right;               // 右
            }
        }
        return result;
    }
};

501.二叉搜索树中的众数

题目

力扣题目链接(opens new window)

给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素)。

假定 BST 有如下定义:

  • 结点左子树中所含结点的值小于等于当前结点的值
  • 结点右子树中所含结点的值大于等于当前结点的值
  • 左子树和右子树都是二叉搜索树

例如:

给定 BST [1,null,2,2],

501. 二叉搜索树中的众数

返回[2].

提示:如果众数超过1个,不需考虑输出顺序

进阶:你可以不使用额外的空间吗?(假设由递归产生的隐式调用栈的开销不被计算在内)

思路
  • 从两个维度来讲。

    首先如果不是二叉搜索树的话,应该怎么解题,是二叉搜索树,又应该如何解题,两种方式做一个比较,可以加深大家对二叉树的理解。

看完代码随想录之后的想法
递归
如果不是二叉搜索树

如果不是二叉搜索树,最直观的方法一定是把这个树都遍历了,用map统计频率,把频率排个序,最后取前面高频的元素的集合。

具体步骤如下:

  • 这个树都遍历了,用map统计频率

至于用前中后序哪种遍历也不重要,因为就是要全遍历一遍,怎么个遍历法都行,层序遍历都没毛病!

这里采用前序遍历,代码如下:

// map<int, int> key:元素,value:出现频率
void searchBST(TreeNode* cur, unordered_map<int, int>& map) { // 前序遍历
    if (cur == NULL) return ;
    map[cur->val]++; // 统计元素频率
    searchBST(cur->left, map);
    searchBST(cur->right, map);
    return ;
}
  • 把统计的出来的出现频率(即map中的value)排个序

有的同学可能可以想直接对map中的value排序,还真做不到,C++中如果使用std::map或者std::multimap可以对key排序,但不能对value排序。

所以要把map转化数组即vector,再进行排序,当然vector里面放的也是pair<int, int>类型的数据,第一个int为元素,第二个int为出现频率。

代码如下:

bool static cmp (const pair<int, int>& a, const pair<int, int>& b) {
    return a.second > b.second; // 按照频率从大到小排序
}

vector<pair<int, int>> vec(map.begin(), map.end());
sort(vec.begin(), vec.end(), cmp); // 给频率排个序
  • 取前面高频的元素

此时数组vector中已经是存放着按照频率排好序的pair,那么把前面高频的元素取出来就可以了。

代码如下:

result.push_back(vec[0].first);
for (int i = 1; i < vec.size(); i++) {
    // 取最高的放到result数组中
    if (vec[i].second == vec[0].second) result.push_back(vec[i].first);
    else break;
}
return result;

整体C++代码如下:

class Solution {
private:

void searchBST(TreeNode* cur, unordered_map<int, int>& map) { // 前序遍历
    if (cur == NULL) return ;
    map[cur->val]++; // 统计元素频率
    searchBST(cur->left, map);
    searchBST(cur->right, map);
    return ;
}
bool static cmp (const pair<int, int>& a, const pair<int, int>& b) {
    return a.second > b.second;
}
public:
    vector<int> findMode(TreeNode* root) {
        unordered_map<int, int> map; // key:元素,value:出现频率
        vector<int> result;
        if (root == NULL) return result;
        searchBST(root, map);
        vector<pair<int, int>> vec(map.begin(), map.end());
        sort(vec.begin(), vec.end(), cmp); // 给频率排个序
        result.push_back(vec[0].first);
        for (int i = 1; i < vec.size(); i++) {
            // 取最高的放到result数组中
            if (vec[i].second == vec[0].second) result.push_back(vec[i].first);
            else break;
        }
        return result;
    }
};
是二叉搜索树

既然是搜索树,它中序遍历就是有序的

中序遍历代码如下:

void searchBST(TreeNode* cur) {
    if (cur == NULL) return ;
    searchBST(cur->left);       // 左
    (处理节点)                // 中
    searchBST(cur->right);      // 右
    return ;
}
  • 遍历有序数组的元素出现频率,从头遍历,那么一定是相邻两个元素作比较,然后就把出现频率最高的元素输出就可以了。

  • 弄一个指针指向前一个节点,这样每次cur(当前节点)才能和pre(前一个节点)作比较。

    而且初始化的时候pre = NULL,这样当pre为NULL时候,我们就知道这是比较的第一个元素。

    代码如下:

    if (pre == NULL) { // 第一个节点
        count = 1; // 频率为1
    } else if (pre->val == cur->val) { // 与前一个节点数值相同
        count++;
    } else { // 与前一个节点数值不同
        count = 1;
    }
    pre = cur; // 更新上一个节点
    
  • 因为要求最大频率的元素集合(注意是集合,不是一个元素,可以有多个众数),

  • 这里其实只需要遍历一次就可以找到所有的众数。

  • 如果 频率count 等于 maxCount(最大频率),当然要把这个元素加入到结果集中(以下代码为result数组),代码如下:

    if (count == maxCount) { // 如果和最大值相同,放进result中
        result.push_back(cur->val);
    }
    

    是不是感觉这里有问题,result怎么能轻易就把元素放进去了呢,万一,这个maxCount此时还不是真正最大频率呢。

    所以下面要做如下操作:

    频率count 大于 maxCount的时候,不仅要更新maxCount,而且要清空结果集(以下代码为result数组),因为结果集之前的元素都失效了。

    if (count > maxCount) { // 如果计数大于最大值
        maxCount = count;   // 更新最大频率
        result.clear();     // 很关键的一步,不要忘记清空result,之前result里的元素都失效了
        result.push_back(cur->val);
    }
    
  • 那么本题整体代码如下:

class Solution {
private:
    int maxCount = 0; // 最大频率
    int count = 0; // 统计频率
    TreeNode* pre = NULL;
    vector<int> result;
    void searchBST(TreeNode* cur) {
        if (cur == NULL) return ;

        searchBST(cur->left);       // 左
                                    // 中
        if (pre == NULL) { // 第一个节点
            count = 1;
        } else if (pre->val == cur->val) { // 与前一个节点数值相同
            count++;
        } else { // 与前一个节点数值不同
            count = 1;
        }
        pre = cur; // 更新上一个节点

        if (count == maxCount) { // 如果和最大值相同,放进result中
            result.push_back(cur->val);
        }

        if (count > maxCount) { // 如果计数大于最大值频率
            maxCount = count;   // 更新最大频率
            result.clear();     // 很关键的一步,不要忘记清空result,之前result里的元素都失效了
            result.push_back(cur->val);
        }

        searchBST(cur->right);      // 右
        return ;
    }

public:
    vector<int> findMode(TreeNode* root) {
        count = 0;
        maxCount = 0;
        pre = NULL; // 记录前一个节点
        result.clear();

        searchBST(root);
        return result;
    }
};
迭代法

给出其中的一种中序遍历的迭代法,其中间处理逻辑一点都没有变(我从递归法直接粘过来的代码,连注释都没改)

C++代码如下:

class Solution {
public:
    vector<int> findMode(TreeNode* root) {
        stack<TreeNode*> st;
        TreeNode* cur = root;
        TreeNode* pre = NULL;
        int maxCount = 0; // 最大频率
        int count = 0; // 统计频率
        vector<int> result;
        while (cur != NULL || !st.empty()) {
            if (cur != NULL) { // 指针来访问节点,访问到最底层
                st.push(cur); // 将访问的节点放进栈
                cur = cur->left;                // 左
            } else {
                cur = st.top();
                st.pop();                       // 中
                if (pre == NULL) { // 第一个节点
                    count = 1;
                } else if (pre->val == cur->val) { // 与前一个节点数值相同
                    count++;
                } else { // 与前一个节点数值不同
                    count = 1;
                }
                if (count == maxCount) { // 如果和最大值相同,放进result中
                    result.push_back(cur->val);
                }

                if (count > maxCount) { // 如果计数大于最大值频率
                    maxCount = count;   // 更新最大频率
                    result.clear();     // 很关键的一步,不要忘记清空result,之前result里的元素都失效了
                    result.push_back(cur->val);
                }
                pre = cur;
                cur = cur->right;               // 右
            }
        }
        return result;
    }
};

236. 二叉树的最近公共祖先

题目
  • 力扣题目链接(opens new window)

    给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

    百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

    例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]

    236. 二叉树的最近公共祖先

    示例 1: 输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 输出: 3 解释: 节点 5 和节点 1 的最近公共祖先是节点 3。

    示例 2: 输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 输出: 5 解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。

    说明:

    • 所有节点的值都是唯一的。
    • p、q 为不同节点且均存在于给定的二叉树中。
思路
  • 首先想的是要是能自底向上查找就好了,这样就可以找到公共祖先了。

  • 二叉树回溯的过程就是从底到上。

  • 后序遍历(左右中)就是天然的回溯过程,可以根据左右子树的返回值,来处理中节点的逻辑。

    接下来就看如何判断一个节点是节点q和节点p的公共祖先呢。

  • 首先最容易想到的一个情况:如果找到一个节点,发现左子树出现结点p,右子树出现节点q,或者 左子树出现结点q,右子树出现节点p,那么该节点就是节点p和q的最近公共祖先。 即情况一:

img

判断逻辑是 如果递归遍历遇到q,就将q返回,遇到p 就将p返回,那么如果 左右子树的返回值都不为空,说明此时的中节点,一定是q 和p 的最近祖先。

那么有录友可能疑惑,会不会左子树 遇到q 返回,右子树也遇到q返回,这样并没有找到 q 和p的最近祖先。

题目强调:二叉树节点数值是不重复的,而且一定存在 q 和 p

  • 但是很多人容易忽略一个情况,就是节点本身p(q),它拥有一个子孙节点q§。 情况二:

img

其实情况一 和 情况二 代码实现过程都是一样的,也可以说,实现情况一的逻辑,顺便包含了情况二。

因为遇到 q 或者 p 就返回,这样也包含了 q 或者 p 本身就是 公共祖先的情况。

看完代码随想录之后的想法
递归法

递归三部曲:

  • 确定递归函数的参数和返回值

需要递归函数返回值,来告诉我们是否找到节点q或者p,那么返回值为bool类型就可以了。

但我们还要返回最近公共节点,可以利用上题目中返回值是TreeNode * ,那么如果遇到p或者q,就把q或者p返回,返回值不为空,就说明找到了q或者p。

代码如下:

TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q)
  • 确定终止条件

遇到空的话,因为树都是空了,所以返回空。

那么我们来说一说,如果 root == q,或者 root == p,说明找到 q p ,则将其返回,这个返回值,后面在中节点的处理过程中会用到

if (root == q || root == p || root == NULL) return root;
  • 确定单层递归的逻辑

本题函数有返回值,是因为回溯的过程需要递归函数的返回值做判断,但本题我们依然要遍历树的所有节点。

递归函数有返回值就是要遍历某一条边,但有返回值也要看如何处理返回值!

如果递归函数有返回值,如何区分要搜索一条边,还是搜索整个树呢?

搜索一条边的写法:

if (递归函数(root->left)) return ;

if (递归函数(root->right)) return ;

搜索整个树写法:

left = 递归函数(root->left);  // 左
right = 递归函数(root->right); // 右
left与right的逻辑处理;         // 中 

在递归函数有返回值的情况下:如果要搜索一条边,递归函数返回值不为空的时候,立刻返回,如果搜索整个树,直接用一个变量left、right接住返回值,这个left、right后序还有逻辑处理的需要,也就是后序遍历中处理中间节点的逻辑(也是回溯)

那么为什么要遍历整棵树呢?直观上来看,找到最近公共祖先,直接一路返回就可以了。

如图:

236.二叉树的最近公共祖先

就像图中一样直接返回7。

但事实上还要遍历根节点右子树(即使此时已经找到了目标节点了),也就是图中的节点4、15、20。

因为在如下代码的后序遍历中,如果想利用left和right做逻辑处理, 不能立刻返回,而是要等left与right逻辑处理完之后才能返回。

所以此时大家要知道我们要遍历整棵树。先用left和right接住左子树和右子树的返回值,代码如下:

TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);

如果left 和 right都不为空,说明此时root就是最近公共节点。这个比较好理解

如果left为空,right不为空,就返回right,说明目标节点是通过right返回的,反之依然

236.二叉树的最近公共祖先1

如果left和right都为空,则返回left或者right都是可以的,也就是返回空。

代码如下:

if (left == NULL && right != NULL) return right;
else if (left != NULL && right == NULL) return left;
else  { //  (left == NULL && right == NULL)
    return NULL;
}

那么寻找最小公共祖先,完整流程图如下:

236.二叉树的最近公共祖先2

代码如下:

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if (root == q || root == p || root == NULL) return root;
        TreeNode* left = lowestCommonAncestor(root->left, p, q);
        TreeNode* right = lowestCommonAncestor(root->right, p, q);
        if (left != NULL && right != NULL) return root;

        if (left == NULL && right != NULL) return right;
        else if (left != NULL && right == NULL) return left;
        else  { //  (left == NULL && right == NULL)
            return NULL;
        }

    }
};

稍加精简,递归代码如下:

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if (root == q || root == p || root == NULL) return root;
        TreeNode* left = lowestCommonAncestor(root->left, p, q);
        TreeNode* right = lowestCommonAncestor(root->right, p, q);
        if (left != NULL && right != NULL) return root;
        if (left == NULL) return right;
        return left;
    }
};

以上代码精简之后如下:

class Solution {
public:
    int sumOfLeftLeaves(TreeNode* root) {
        if (root == NULL) return 0;
        int leftValue = 0;
        if (root->left != NULL && root->left->left == NULL && root->left->right == NULL) {
            leftValue = root->left->val;
        }
        return leftValue + sumOfLeftLeaves(root->left) + sumOfLeftLeaves(root->right);
    }
};
总结

这道题目刷过的同学未必真正了解这里面回溯的过程,以及结果是如何一层一层传上去的。

那么我给大家归纳如下三点

  1. 求最小公共祖先,需要从底向上遍历,那么二叉树,只能通过后序遍历(即:回溯)实现从底向上的遍历方式。
  2. 在回溯的过程中,必然要遍历整棵二叉树,即使已经找到结果了,依然要把其他节点遍历完,因为要使用递归函数的返回值(也就是代码中的left和right)做逻辑判断。
  3. 要理解如果返回值left为空,right不为空为什么要返回right,为什么可以用返回right传给上一层结果。

可以说这里每一步,都是有难度的,都需要对二叉树,递归和回溯有一定的理解。

遇到困难

  • 最后一题理解起来比较困难,但总算把逻辑理顺了

今日收获

  • 明天继续赶进度,加油
  • 速度越来越快了
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值