Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<queue>
using namespace std;
typedef long long ll;
struct node{
int x,step;
};
queue<node> Q;
ll n,k,book[1000001];
void bfs(){
while(!Q.empty()){
node t=Q.front();//将队首提出来
Q.pop();//将队首弹出来
int X=t.x;
int STEP=t.step;
if(X==k){
cout<<STEP<<endl;
return ;
}
//把三种走法随便走,最先到达的时间最短,走过的点不再走
if(X>=1&&book[X-1]==0){
book[X-1]=1;
node temp;
temp.x=X-1;
temp.step=STEP+1;
Q.push(temp);
}
if(X<=k&&X+1<=100000&&book[X+1]==0){
book[X+1]=1;
node temp;
temp.x=X+1;
temp.step=STEP+1;
Q.push(temp);
}
if(X<=k&&X*2<=100000&&book[X*2]==0){
book[X*2]=1;
node temp;
temp.x=X*2;
temp.step=STEP+1;
Q.push(temp);
}
}
}
int main(){
cin>>n>>k;
while(!Q.empty())
Q.pop();
node t;
t.x=n;
t.step=0;
Q.push(t);//先将t入队
bfs();
return 0;
}