- 博客(12)
- 收藏
- 关注
原创 差速移动机器人MPC中误差状态矩阵和控制矩阵推导
其中,vr,ωr 是参考轨迹的速度和角速度,Δv=v−vr是线速度误差。因此得到误差矩阵A和控制矩阵B。具体推导过程见下图。
2025-03-21 16:35:55
315
原创 差速机器人运行学方程
机器人围绕沿左右轮轴线上点[瞬时曲率中心(ICR)]旋转。两个车轮绕ICR的旋转速度相同。 (1)左轮速度: (2)右轮速度:
2025-03-20 19:59:38
823
原创 《模型预测控制器(MPC)的选择》
在低速下,可以使用一个简单的线性动态模型实现实时MPC控制。当然,在高速情况下,通过显性MPC或者其他方法减少计算成本,也是可行的。但是NMPC在外部干扰的情况下,能够提供更强大的性能。移动机器人的运动模型的选择对MPC的选择具有决定性的作用。但是在较高的速度下,会给系统带来不确定性,降低控制器的性能。最后,也可以考虑使用神经网络NN来预测未来的状态,需要注意的是,在神经网络中,优化问题的代价函数是非凸的,可能会出现不理想的局部最小值,需要对神经网络进行改善,这里不多加赘述。
2025-03-03 20:11:06
246
原创 《移动机器人的“自我描述”(动力学状态方程)》
相比较于移动机器人的运动学模型,动力学引入机器人的质量和惯性,考虑机器人对输入产生响应的过程。对于自行车模型,其动力学模型多了两部分:平动动力学和转动动力学。:假设速度变换缓慢,忽略前后轴载荷的转移。为曲率因子,表示曲线最大值附近的形状,为曲率因子,表示曲线最大值附近的形状,为曲率因子,表示曲线最大值附近的形状,,为轮胎在侧向、纵向的速度,可用。为曲线巅因子,表示曲线的最大值,为曲线巅因子,表示曲线的最大值,为曲线巅因子,表示曲线的最大值,,前后轮胎收到的x方向的力。,前后轮胎收到的y方向的力。
2025-03-03 09:53:19
790
原创 《移动机器人的“自画像”(运动学方程)由来》
龙生九子各有不同,为了适应不同的工作场景,移动机器人也有着不同的底盘,下面介绍的是应用最广的差速移动底盘,他长这个样子。因为后轮轴心通常被视为机器人的旋转中心,所以运动学状态方程也是以后轮求解。为机器人前轴轴心坐标 ,由下图可知式1.5怎么来的。为机器人后轴轴心坐标,为机器人前轴中心速度,
2025-02-28 10:41:35
293
原创 summit_xl | 跬步机器人键盘控制
订阅不到/cmd_vel,因为,没有这个节点,运行rostopic list可以看到是/robot/cmd_vel;
2024-09-30 15:05:30
415
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人