**
一.感知机的原理
感知机是二分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,分
别取+1和−1二值。如果要处理的数据是线性可分的,则该模型能取得很好的效果,如
果数据不是线性可分的,则该模型不能取得很好的效果。以二维平面为例,如果要分
类 的点,能被一条直线分开,直线的一侧是正类,直线的另一侧是负类,则说明数据
是线性可分的。如果数据需要一个圆来分开则说明数据不是线性可分的。
二.感知机模型
感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判
别模型。以二维平面为例,假设平面中存在着′∘′′∘′和′×′′×′两种形状的点,感知机要做
的是就是找到一条直线,将两类点分割开,感知机只适合于线性可分的数据,所以它
是一个线性模型。
2.1 感知机形式
感知机就是为了确定一条直线WX+b,让直线的一侧为正类,直线的另一侧是负类。当WX+b运算大于0时为+1,WX+b运算小于0时为-1,为此引入了sign函数.
假设平面中存在着′∘′和′×′两种形状的点,感知机要做的是就是找到一条直线,将两类点分割开
*三.感知机算法
3.1 感知机原始算法
输入:训练数据集T=(x1,y1),(x2,y2),…,(xN,yN),yi∈{−1,+1},学习率η(0<η<1)
输出:w,b;感知机模型f(x)=sign(w⋅x+b)
- 赋初值 w0,b0
- 选取数据点(xi,yi)
- 判断该数据点是否为当前模型的误分类点,即判断若yi(w⋅xi+b)<=0则更新
w=w+ηyixi
b=b+ηyi - 转到2,直到训练集中没有误分类点
3.2 代码执行
3.2.1. 感知器神经网络的构建
% 1.1 生成网络
net=newp([0 2],1); %单输入,输入值为[0,2]之间的数
inputweights=net.inputweights{1,1}; %第一层的权重为1
biases=net.biases{1}; %阈值为1
% 1.2 网络仿真
net=newp([-2 2;-2 2],1);%两个输入,一个神经元,默认二值激活
net.IW{1,1}=[-1 1];%权重,net.IW{i,j}表示第i层网络第j个神经元的权重向量
net.IW{1,1}
net.b{1}=1;
net.b{1}
p1=[1;1],a1=sim(net,p1)
p2=[1;-1],a2=sim(net,p2)
p3={[1;1] [1 ;-1]},a3=sim(net,p3) %两组数据放一起
p4=[1 1;1 -1],a4=sim(net,p4)%也可以放在矩阵里面
net.IW{1,1}=[3,4];
net.b{1}=[1];
a1=sim(net,p1);
% 1.3 网络初始化
net=init(net);
wts=net.IW{1,1}
bias=net.b{1}
% 改变权值和阈值为随机数
net.inputweights{1,1}.initFcn='rands';
net.biases{1}.initFcn='rands';
net=init(net);
bias=net.b{1}
wts=net.IW{1,1}
a1=sim(net,p1)
运行结果:
ans =
-1 1
ans =
1
p1 =
1
1
a1 =
1
p2 =
1
-1
a2 =
0
p3 =
1×2 cell 数组
{2×1 double} {2×1 double}
a3 =
1×2 cell 数组
{[1]} {[0]}
p4 =
1 1
1 -1
a4 =
1 0
a1 =
1
wts =
0 0
bias =
0
bias =
0.6294
wts =
0.8116 -0.7460
a1 =
1
#### 3.2.2. 感知器神经网络的学习和训练
% 1 网络学习
net=newp([-2 2;-2 2],1);
net.b{1}=[0];
w=[1 -0.8]
net.IW{1,1}=w;
p=[1;2];
t=[1];
a=sim(net,p)
e=t-a
help learnp
dw=learnp(w,p,[],[],[],[],e,[],[],[],[],[])
w=w+dw
net.IW{1,1}=w;
a=sim(net,p)
net = newp([0 1; -2 2],1);
P = [0 0 1 1; 0 1 0 1];
T = [0 1 1 1];
Y = sim(net,P)
net.trainParam.epochs = 20;
net = train(net,P,T);
Y = sim(net,P)
% 2 网络训练
net=init(net);
p1=[2;2];t1=0;p2=[1;-2];t2=1;p3=[-2;2];t3=0;p4=[-1;1];t4=1;
net.trainParam.epochs=1;
net=train(net,p1,t1)
w=net.IW{1,1}
b=net.b{1}
a=sim(net,p1)
net=init(net);
p=[[2;2] [1;-2] [-2;2] [-1;1]];
t=[0 1 0 1];
net.trainParam.epochs=1;
net=train(net,p,t);
a=sim(net,p)
net=init(net);
net.trainParam.epochs=2;
net=train(net,p,t);
a=sim(net,p)
net=init(net);
net.trainParam.epochs=20;
net=train(net,p,t);
a=sim(net,p)
% 3. 二输入感知器分类可视化问题
P=[-0.5 1 0.5 -0.1;-0.5 1 -0.5 1];
T=[1 1 0 1]
net=newp([-1 1;-1 1],1);
plotpv(P,T);
plotpc(net.IW{1,1},net.b{1});
%hold on;
%plotpv(P,T);
net=adapt(net,P,T);
net.IW{1,1}
net.b{1}
plotpv(P,T);
plotpc(net.IW{1,1},net.b{1})
net.adaptParam.passes=3;
net=adapt(net,P,T);
net.IW{1,1}
net.b{1}
plotpc(net.IW{1},net.b{1})
net.adaptParam.passes=6;
net=adapt(net,P,T)
net.IW{1,1}
net.b{1}
plotpv(P,T);
plotpc(net.IW{1},net.b{1})
plotpc(net.IW{1},net.b{1})
%仿真
a=sim(net,p);
plotpv(p,a)
p=[0.7;1.2]
a=sim(net,p);
plotpv(p,a);
hold on;
plotpv(P,T);
plotpc(net.IW{1},net.b{1})
%感知器能够正确分类,从而网络可行。
% 4. 标准化学习规则训练奇异样本
P=[-0.5 -0.5 0.3 -0.1 -40;-0.5 0.5 -0.5 1.0 50]
T=[1 1 0 0 1];
net=newp([-40 1;-1 50],1);
plotpv(P,T);%标出所有点
hold on;
linehandle=plotpc(net.IW{1},net.b{1});%画出分类线
E=1;
net.adaptParam.passes=3;%passes决定在训练过程中训练值重复的次数。
while (sse(E))
[net,Y,E]=adapt(net,P,T);
linehandle=plotpc(net.IW{1},net.b{1},linehandle);
drawnow;
end;
axis([-2 2 -2 2]);
net.IW{1}
net.b{1}
%另外一种网络修正学习(非标准化学习规则learnp)
hold off;
net=init(net);
net.adaptParam.passes=3;
net=adapt(net,P,T);
plotpc(net.IW{1},net.b{1});
axis([-2 2 -2 2]);
net.IW{1}
net.b{1}
%无法正确分类
%标准化学习规则网络训练速度要快!
% 训练奇异样本
% 用标准化感知器学习规则(标准化学习数learnpn)进行分类
net=newp([-40 1;-1 50],1,'hardlim','learnpn');
plotpv(P,T);
linehandle=plotpc(net.IW{1},net.b{1});
e=1;
net.adaptParam.passes=3;
net=init(net);
linehandle=plotpc(net.IW{1},net.b{1});
while (sse(e))
[net,Y,e]=adapt(net,P,T);
linehandle=plotpc(net.IW{1},net.b{1},linehandle);
end;
axis([-2 2 -2 2]);
net.IW{1}%权重
net.b{1}%阈值
%正确分类
%非标准化感知器学习规则训练奇异样本的结果
net=newp([-40 1;-1 50],1);
net.trainParam.epochs=30;
net=train(net,P,T);
pause;
linehandle=plotpc(net.IW{1},net.b{1});
hold on;
plotpv(P,T);
linehandle=plotpc(net.IW{1},net.b{1});
axis([-2 2 -2 2]);
% 5. 设计多个感知器神经元解决分类问题
p=[1.0 1.2 2.0 -0.8; 2.0 0.9 -0.5 0.7]
t=[1 1 0 1;0 1 1 0]
plotpv(p,t);
hold on;
net=newp([-0.8 1.2; -0.5 2.0],2);
linehandle=plotpc(net.IW{1},net.b{1});
net=newp([-0.8 1.2; -0.5 2.0],2);
linehandle=plotpc(net.IW{1},net.b{1});
e=1;
net=init(net);
while (sse(e))
[net,y,e]=adapt(net,p,t);
linehandle=plotpc(net.IW{1},net.b{1},linehandle);
drawnow;
end;
运行结果:
w =
1.0000 -0.8000
a =
0
e =
1
dw =
1 2
w =
2.0000 1.2000
a =
1
Y =
1 1 1 1
Y =
0 1 1 1
w =
-2 -2
b =
-1
a =
0
a =
0 0 1 1
a =
0 1 0 1
a =
0 1 0 1
T =
1 1 0 1
ans =
-0.5000 0.5000
ans =
-1
ans =
-0.1000 2.0000
ans =
2
net =
ans =
-0.6000 2.5000
ans =
1
p =
0.7000
1.2000
P =
-0.5000 -0.5000 0.3000 -0.1000 -40.0000
-0.5000 0.5000 -0.5000 1.0000 50.0000
ans =
-45.0000 10.5000
ans =
-17
ans =
-0.2000 -0.5000
ans =
-2
ans =
-1.5592 -0.1980
ans =
0
p =
1.0000 1.2000 2.0000 -0.8000
2.0000 0.9000 -0.5000 0.7000
t =
1 1 0 1
0 1 1 0
**
四.BP神经网络
4.1 BP神经网络概念
BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提
出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广
泛的神经网络。
**
4.2 基本原理
BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称
为 BP算法,它的基本思想是梯度下降法,利用梯度搜索技术,以期使网络的实际输
出 值和期望输出值的误差均方差为最小。
4.3 计算过程
4.4 劣优势
BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。
①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。
②容易陷入局部极小值。
③网络层数、神经元个数的选择没有相应的理论指导。
④网络推广能力有限。
4.5 代码实现
4.5.1 BP神经网络的构建
net=newff([-1 2;0 5],[3,1],{'tansig','purelin'},'traingd')
net.IW{1}
net.b{1}
%p=[1;];
p=[1;2];
a=sim(net,p)
net=init(net);
net.IW{1}
net.b{1}
a=sim(net,p)
net.IW{1}*p+net.b{1}
p2=net.IW{1}*p+net.b{1}
a2=sign(p2)
a3=tansig(a2)
a4=purelin(a3)
net.b{2}
net.b{1}
P=[1.2;3;0.5;1.6]
W=[0.3 0.6 0.1 0.8]
net1=newp([0 2;0 2;0 2;0 2],1,'purelin');
net2=newp([0 2;0 2;0 2;0 2],1,'logsig');
net3=newp([0 2;0 2;0 2;0 2],1,'tansig');
net4=newp([0 2;0 2;0 2;0 2],1,'hardlim');
net1.IW{1}
net2.IW{1}
net3.IW{1}
net4.IW{1}
net1.b{1}
net2.b{1}
net3.b{1}
net4.b{1}
net1.IW{1}=W;
net2.IW{1}=W;
net3.IW{1}=W;
net4.IW{1}=W;
a1=sim(net1,P)
a2=sim(net2,P)
a3=sim(net3,P)
a4=sim(net4,P)
init(net1);
net1.b{1}
help tansig
运行结果:
ans =
1.4249 -0.4581
1.5238 0.3238
-1.0677 0.7283
ans =
-1.9920
-1.5715
-3.7117
a =
-1.2309
ans =
-0.2970 -0.9534
0.9465 0.7863
-1.2525 0.6132
ans =
4.9570
-2.4390
-3.3316
a =
2.5610
ans =
2.7531
0.0801
-3.3577
p2 =
2.7531
0.0801
-3.3577
a2 =
1
1
-1
a3 =
0.7616
0.7616
-0.7616
a4 =
0.7616
0.7616
-0.7616
ans =
0.6983
ans =
4.9570
-2.4390
-3.3316
P =
1.2000
3.0000
0.5000
1.6000
W =
0.3000 0.6000 0.1000 0.8000
ans =
0 0 0 0
ans =
0 0 0 0
ans =
0 0 0 0
ans =
0 0 0 0
ans =
0
ans =
0
ans =
0
ans =
0
a1 =
3.4900
a2 =
0.9704
a3 =
0.9981
a4 =
1
ans =
0
4.5.2 训练
p=[-0.1 0.5]
t=[-0.3 0.4]
w_range=-2:0.4:2;
b_range=-2:0.4:2;
ES=errsurf(p,t,w_range,b_range,'logsig');%单输入神经元的误差曲面
plotes(w_range,b_range,ES)%绘制单输入神经元的误差曲面
pause(0.5);
hold off;
net=newp([-2,2],1,'logsig');
net.trainparam.epochs=100;
net.trainparam.goal=0.001;
figure(2);
[net,tr]=train(net,p,t);
title('动态逼近')
wight=net.iw{1}
bias=net.b
pause;
close;
p=[-0.2 0.2 0.3 0.4]
t=[-0.9 -0.2 1.2 2.0]
h1=figure(1);
net=newff([-2,2],[5,1],{'tansig','purelin'},'trainlm');
net.trainparam.epochs=100;
net.trainparam.goal=0.0001;
net=train(net,p,t);
a1=sim(net,p)
pause;
h2=figure(2);
plot(p,t,'*');
title('样本')
title('样本');
xlabel('Input');
ylabel('Output');
pause;
hold on;
ptest1=[0.2 0.1]
ptest2=[0.2 0.1 0.9]
a1=sim(net,ptest1);
a2=sim(net,ptest2);
net.iw{1}
net.iw{2}
net.b{1}
net.b{2}
p =
-0.1000 0.5000
t =
-0.3000 0.4000
wight =
15.1653
bias =
1×1 cell 数组
{[-8.8694]}
p =
-0.2000 0.2000 0.3000 0.4000
t =
-0.9000 -0.2000 1.2000 2.0000
a1 =
-0.9000 -0.1999 1.1999 2.0000
ptest1 =
0.2000 0.1000
ptest2 =
0.2000 0.1000 0.9000
ans =
9.9011
0.0310
1.6399
0.6896
-3.4641
ans =
[]
ans =
-2.5935
-11.5221
-8.2836
17.5030
-7.1754