LLM推理入门实践:基于 Hugging Face Transformers 和 vLLM

1. HuggingFace模型下载

模型在 HuggingFace 下载,如果下载速度太慢,可以在 HuggingFace镜像网站ModelScope 进行下载。

使用HuggingFace的下载命令(需要先注册HuggingFace账号):

第一步:安装 git-lfs

curl https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | bash
apt-get install git-lfs

第二步:下载 Qwen2-0.5B 模型

git lfs clone https://huggingface.co/Qwen/Qwen2-0.5B

下载完后的模型包括以下文件:

config.json  # 模型配置文件,包含了模型的各种参数设置,例如层数、隐藏层大小、注意力头数
generation_config.json   #文本生成相关的模型配置
merges.txt   #训练tokenizer阶段所得到的合并词表结果
model.Safetensors    #模型文件
tokenizer.json    #分词器,将词转换为数字
tokenizer_config.json   #分词模型的配置信息,如分词器的类型、词汇表大小、最大序列长度、特殊标记等
vocab.json    #词表

2. Hugging Face Transformers 库模型推理

Hugging Face Transformers 库既可以用于训练,也可以用于推理
vLLM 库只能用于推理

本文使用单卡 A100-80G 进行推理实验

注意:使用 Qwen2 模型需要将 transformers 库更新到最新版本

code:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# 从本地加载预训练模型
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_path = "models/Qwen2-0.5B"
model = AutoModelForCausalLM.from_pretrained(model_path,device_map=device)  
# 设置 device_map="auto" 会自动使用所有多卡
print(f"model: {
     
     model}")

# 加载 tokenizer(分词器)
# 分词器负责将句子分割成更小的文本片段 (词元) 并为每个词元分配一个称为输入 id 的值(数字),因为模型只能理解数字。
# 每个模型都有自己的分词器词表,因此使用与模型训练时相同的分词器很重要,否则它会误解文本。
tokenizer = AutoTokenizer.from_pretrained(model_path, add_eos_token=True, padding_side='left')
# add_eos_token=True: 可选参数,表示在序列的末尾添加一个结束标记(end-of-sequence token),这有助于模型识别序列的结束。
# padding_side='left': 可选参数,表示 padding 应该在序列的哪一边进行,确保所有序列的长度一致。

# 模型输入
input_text = "介绍一下悉尼这座城市。"

# 对输入文本分词
input_ids = tokenizer(input_text, return_tensors="pt").to(device)
# return_tensors="pt": 指定返回的数值序列的数据类型。"pt"代表 PyTorch Tensor,表示分词器将返回一个PyTorch而不是TensorFlow对象

# 生成文本回答
# max_new_tokens:模型生成的新的 token 的最大数量为 200
outputs = model.generate(input_ids["input_ids"], max_new_tokens=200)
print(f"type(outputs) = {
     
     type(outputs)}")   # <class 'torch.Tensor'>
print(f"outputs.shape = {
     
     outputs.shape}"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ctrl A_ctrl C_ctrl V

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值