3000字详解:终于理解机器学习中极大似然估计MLE和最大后验估计MAP的原理

本文详细介绍了机器学习中的极大似然估计(MLE)和最大后验概率估计(MAP)的概念,解释了两者的区别和联系。通过实例展示了如何运用这两种方法进行参数估计,并探讨了在大量数据下两者的关系。同时,文章还涉及了正则化中的L1和L2正则与MAP的关联,以及贝叶斯公式和贝叶斯估计的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最大似然估计(MLE)、最大后验概率估计(MAP)这两个概念在机器学习和深度学习中经常碰到。现代机器学习的终极问题都会转化为解目标函数的优化问题,MLE和MAP是生成这个函数的很基本的思想,因此我们对二者的认知是非常重要的。

在统计中最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法(根据观测到的数据去推测模型和参数),但很多人并不理解这两种方法的思路,本文将详细介绍他们的区别。

相关资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

捡起一束光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值