机器学习必知必会
- 相关资料
- 一、概率和统计的区别
- 二、概率函数和似然函数的区别 P ( x ∣ θ ) P(x|\theta) P(x∣θ)
- 三、频率学派:极大似然估计 argmax θ P ( x ∣ θ ) \underset{\theta}{\operatorname{argmax}} P(x \mid \theta) θargmaxP(x∣θ)
- 四、贝叶斯学派:最大后验估计 argmax θ P ( x ∣ θ ) P ( θ ) \underset{\theta}{\operatorname{argmax}} P(x \mid \theta) P(\theta) θargmaxP(x∣θ)P(θ)
- 五、 最大似然估计与最大后验估计的区别
- 六、进阶知识
最大似然估计(MLE)、最大后验概率估计(MAP)这两个概念在机器学习和深度学习中经常碰到。现代机器学习的终极问题都会转化为解目标函数的优化问题,MLE和MAP是生成这个函数的很基本的思想,因此我们对二者的认知是非常重要的。
在统计中最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法(根据观测到的数据去推测模型和参数),但很多人并不理解这两种方法的思路,本文将详细介绍他们的区别。
相关资料
- 详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解 (这篇博客写得非常精彩,本文主要参考这篇博客)
- 最大似然估计(MLE) & 最大后验概率估计(MAP)
- 极大似然估计与最大后验概率估计