自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 资源 (1)
  • 收藏
  • 关注

原创 动手学深度学习pytorch版练习解答-3.7softmax的简洁实现

动手学深度学习pytorch版练习解答-3.7softmax的简洁实现

2022-11-27 21:11:44 1489

原创 动手学深度学习pytorch版练习解答-3.6softmax回归的从零开始实现

数学计算softmax的问题

2022-11-16 16:56:09 987

原创 动手学深度学习pytorch版练习解答-3.5图像分类数据集

3-5图像分类数据集 练习解答

2022-10-07 23:40:43 874

原创 动手学深度学习pytorch版练习解答-3.4softmax回归

d2l-pytorch 3.4习题解答

2022-09-28 12:21:21 1541 2

原创 远程服务器jupyter notebook安装插件

安装jupyter插件报错怎么办

2022-09-23 16:39:39 637

原创 近期windows系统电脑开热点后电脑无法上网但连接热点设备可以上网问题的解决

遇到装windows系统电脑开热点后电脑上不了网但连热点的设备可以上网的问题,可以尝试一下删除最近的更新文件再重启

2022-06-28 22:31:03 989

原创 如何使用python在一个图片内显示多个函数图像及其数学公式

这段代码能够解决plt.legend里数学公式输出和设置字体问题,简单说就是font={ 'family':'Times New Roman', 'weight':'light' }plt.legend(['relu:$\mathdefault{f(x) \equal max(0,x)}$','sigmoid:$\mathdefault{f(x)=\\frac{1}{1+e^{-x}}}$'],loc='upper left',prop=font)核心部分是设

2022-04-26 18:14:18 3556

原创 python seaborn显示的热力图中科学技术法怎么改成普通数值+怎样用深度学习数据画热力图

省流:heatmap参数中加入fmt='.0f’即可,即:import seaborn as sns# C2是一个混淆矩阵sns.heatmap(C2, annot=True, ax=ax,fmt='.0f') # Draw a heat map接下来第二个问题,怎样在热力图上呈现深度学习的数据呢?有时候我们会进行GPU上的张量计算,所以要使之转化为普通的列表或数值,需要做一定处理,完整代码如下,下面先给一些细节解释:其中参数前两个都是深度神经网络结构,loader是pytorch的datal

2022-04-23 18:13:31 1800

原创 windows上用virtualbox运行mac虚拟机时怎样使用usb

刚装完mac虚拟机想着用usb传一点文件,奈何插上后没反应,后来看了篇文章捣鼓出来了,这里简单总结一下。1.安装mac虚拟机时选择usb设备报错:这是因为没有装Extension Pack,可以根据自己virtualbox版本自己下载后装上。步骤:Oracle VM Virtualbox管理器→帮助→关于Virtualbox,看自己的版本→去这里找对应的版本下载,哪个数字打头点哪个数字开头的进去再按照版本号细找即可2.在mac虚拟机上显示usb注意下你的电脑usb端口类型以及你把usb插到了哪种类

2022-04-01 20:50:57 1893 1

原创 动手学深度学习pytorch版练习解答-3.3线性回归的简洁实现

如果将小批量的总损失替换为小批量损失的平均值,你需要如何更改学习率?解:默认的其实就是平均值(mean squared),问题问得不对,要反过来做。学习率除batch_size即可查看深度学习框架⽂档,它们提供了哪些损失函数和初始化⽅法?⽤Huber损失代替原损失,即提供的loss如下图所示,如果需要具体了解可以使用help(torch.nn.xxxLoss)或者百度查询# huber损失对应Pytorch的SmoothL1损失loss = nn.SmoothL1Loss(beta=0.5.

2022-02-13 23:44:00 3238 2

原创 动手学深度学习pytorch版练习解答——3-2线性回归的从零开始实现

练习如果我们将权重初始化为零,会发⽣什么。算法仍然有效吗?\qquad 解:全0初始化也是常用的一个选择,跟正态分布初始化相比可能会走向不同的局部最优点,算法还是有效的。假设你是乔治·西蒙·欧姆,试图为电压和电流的关系建⽴⼀个模型。你能使⽤⾃动微分来学习模型的参数吗?\qquad 解:题例中电流当做features,电压当做labels,描点绘图后发现二者呈线性关系,再用书上的代码走一遍即可。您能基于普朗克定律使⽤光谱能量密度来确定物体的温度吗?\qquad 解:能量密度频谱u关于波

2022-01-18 13:15:50 2659 2

原创 动手学深度学习pytorch版练习解答—3.1线性回归

第一问和第三问最后一小题都是开放性题目,有很多角度去思考和回答。希望我的这份参考能为您的学习带来帮助,您的指正对我而言也是大有裨益。假设我们有⼀些数据x1, . . . , xn ∈ R。我们的⽬标是找到⼀个常数b,使得最小化∑i(xi−b)2\sum_{i}(x_i-b)^2∑i​(xi​−b)2(1)找到最优值b的解析解。(2)这个问题及其解与正态分布有什么关系?2. 推导出使⽤平⽅误差的线性回归优化问题的解析解。为了简化问题,可以忽略偏置b(我们可以通过向X添加所有值为1的⼀列来做到这⼀点)

2022-01-12 01:19:56 2406 4

原创 动手学深度学习pytorch版练习解答—2.6概率

这次应该只算参考吧,后面三问我觉得答得一般般,有会的大哥也可以说下怎么做。进⾏m = 500组实验,每组抽取n = 10个样本。改变m和n,观察和分析实验结果。给定两个概率为P(A)和P(B)的事件,计算P(A ∪ B)和P(A ∩ B)的上限和下限。(提⽰:使⽤友元图43来展⽰这些情况。)假设我们有⼀系列随机变量,例如A、B和C,其中B只依赖于A,而C只依赖于B,你能简化联合概率P(A, B, C)吗?(提⽰:这是⼀个⻢尔可夫链44。)在 2.6.2节中,第⼀个测试更准确。为什么不运⾏第⼀个

2022-01-07 10:38:26 2059

原创 动手学深度学习pytorch版练习解答—2.5自动微分

这里第5问用到的函数是上一节微分里面写好的,原书把它封装到了一个包里面,封装步骤见本书正文前面还有微分那一节。我就直接cv下来了。以下是代码部分:#第二问import torchx=torch.arange(4.0,requires_grad=True)print(x)y=torch.dot(x,x)print(y)y.backward(retain_graph=True)print("第一次运行反向传播:",x.grad)y.backward()print("第二次运行反向传播:"

2022-01-06 10:36:37 1473

原创 动手学深度学习pytorch版练习解答——2.4微积分

这里主要涉及到一些高等数学的知识,包括梯度、链式法则等等

2022-01-02 20:52:44 785 4

原创 动手学深度学习pytorch版练习解答——2.3线性代数

这个主要是一些笔答题,编程题难度不大而且是要求做观察,主要是希望读者了解好pytorch里面的一些矩阵操作和范数的意义

2021-12-28 21:27:23 564

原创 动手学深度学习pytorch版练习解答——2.2预备知识/数据预处理

我在jupyter notebook完成的练习,花的时间有点多毕竟是新学的,像是判断数字、判断数值是否为空、删除指定列这些,给新看这本书的朋友们一个参考。先贴出整体运行结果,后面放代码以下是代码部分:import osos.makedirs(os.path.join('..','practice'),exist_ok=True)practice_file=os.path.join('..','practice','student_scores.csv')with open(practice_fi

2021-12-22 17:18:23 521

原创 pytorch adda代码学习笔记

pretrain.py1:.sum().item()preds = classifier(src_encoder(images))total_acc += (preds.max(1)[1] == labels).sum().item()sum取的是preds.max(1)[1]和labels相等的个数,类型为tensor,item()将之转化为python数字.上面的preds.max(1)[1]是什么?adapt.pyimport torch.optim as optimimport t

2021-12-09 11:59:35 1595 8

原创 Codeup:单词替换

题目地址:http://codeup.hustoj.com/problem.php?cid=100000580&pid=3(codeup换地方了,《算法笔记》上面的是无效的)具体思想可以看下注释,这里要说明一个重要的问题:getline(cin,s)有时候在你输入回车时会把空输入赋给s,要规避这个问题只需要这样写:while(getline(cin,sentence)){ //防止geiline抽风 if(sentence.empty())continue;以

2021-12-03 20:23:57 115

原创 Powshell的Set-Location:找不到接受实际参数问题的解决

给带空格的文件夹名字加上双引号即可

2021-11-19 11:18:56 4291

原创 2018款Y7000升级硬盘+迁移、升级黑苹果

快速导览欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编

2021-10-26 11:33:15 4936 2

原创 Adversarial Discriminative Domain Adaptation阅读笔记(详细)

[更新中]我的第一篇在线论文阅读笔记-Adversarial Discriminative Domain Adaptation为什么采用这种形式我和这篇文章的渊源名词解释重点语句分析(部分单词给出中文注释)为什么采用这种形式今日下午(2021.10.16)想着,看一篇论文,我在原文里面写注释和笔记,然后每次看完以后我都得把标注过的论文传到QQ或者微信里,这样方便下一台电脑接着看。这样刚开始好像没啥问题,可是时间长了,最新注释版本的论文也不知道放到哪里去了,也不知道哪个版本是最新的,那么为什么不放在网络的

2021-10-16 16:37:16 4909 15

原创 2018款联想Y7000 黑苹果外接显示器方案

参考资料这个是参考知乎帖子https://zhuanlan.zhihu.com/p/355895597所写出来的解决方案,也就是采用DisplayLink。内容与其中无大异,只是稍微有些小小的不同,因此看我写的这篇和知乎的那个帖子基本都可以工具准备1.一台联想y7000电脑(我用的是18款)2.ThinkPad Dock简约版(含电源线)3.DVI 24-5转VGA接头(转VGA还是HDMI取决于你用什么接口连显示器)4.USB 3.0打印机连接线以上工具皆可以在某鱼淘到,我之前买的时候不知道

2021-04-22 10:17:15 12429 16

原创 用类似并查集的方法判断无向图的连通性

图的连通性在一个无向图里,从任意一个顶点出发到其他顶点都有路径,说明它是连通的并查集具体概念请见百度百科并查集这里简单点说,就是在一开始独立的N个元素的集合中,把有一定关联的元素集合到一起,使得他们有共同的父结点(其实就是同一个根结点),并查集使用完成以后我们看到的会是一个森林(哪怕是只有一颗树的)。对于图的连通性而言,并查集下如果发现只剩下一棵树,那么这个图就是连通的题目引入这里我用...

2020-05-06 08:55:22 1246 1

原创 Windows下MySQL8.0中secure_file_priv为NULL解决办法

博主MySQL的安装情况博主是用mysql官网的压缩包安装mysql的,配置文件一开始这样放,mysql也跑的起来![my.ini放在mysql所在文件夹外面,但是是在同一目录下](https://img-blog.csdnimg.cn/20200408210457357.png#pic_center)后来想导出数据库里面的一些数据,提示我secure_file_priv=null,报错,...

2020-04-08 21:11:26 6118 4

原创 字符串的反码(吉林大学考研复试题)

题面一个二进制数,将其每一位取反,称之为这个数的反码。下面我们定义一个字符的反码。如果这是一个小写字符,则它和字符’a’的距离与它的反码和字符’z’的距离相同;如果是一个大写字符,则它和字符’A’的距离与它的反码和字符’Z’的距离相同;如果不是上面两种情况,它的反码就是它自身。 举几个例子,'a’的反码是’z’;‘c’的反码是’x’;‘W’的反码是’D’;‘1’的反码还是’1’;’%‘的...

2020-03-18 21:51:38 595

原创 C++中用位运算实现十进制转二进制

C++中用位运算实现十进制转二进制有一次在牛客网上做北邮考研复试的一道题,题面如下:(声明:本人在查看部分已通过代码和自己提交的代码后得知在牛客网中提交此题只需要做到把一个十进制数转化成二进制数,如果按题目要求来做估计就是错误,若有疑问请在评论区说明)原题链接:二进制数第一次写博文,写的不好就原宥一下啦~二进制数大家都知道,数据在计算机里中存储是以二进制的形式存储的。 有一天,小明学了...

2020-03-14 10:57:36 3101

Calculator.py

Calculator.py

2022-04-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除