感知机以及梯度下降法,最小二乘法,偏差,方差,协方差

本文介绍了感知机模型及其在分类问题中的应用,强调感知机的解非唯一性和优化过程,通常使用梯度下降法。同时讨论了梯度下降法的概念、优化策略以及不同类型的梯度下降法。还提到了最小二乘法在解决线性问题中的作用,并分析了偏差、方差和协方差在评估模型性能中的意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

.感知机:感知机的模型就是尝试找到一条直线,能够把位于一个平台上所有的男孩和女孩隔离开。放到三位或者更高维空间,感知机的模型就是尝试找到一个超平面,把所有的二元类别隔离开。如果找不到这样的直线,那就说明感知机模型不合适,感知机应用于线性可分。
感知机的话他的解不是唯一的,只要能把两类分开即可,在实际应用中感知机的对偶形式比原始问题运算要快的多
损失函数的优化目标,就是期望使误分类的所有样本,到超平面的距离之和最小。 对每一个分错的点到超平面的距离 −y(i)θ∙x(i)/||θ||2,
我们假设所有误分类的点的集合为M,则所有误分类的样本到超平面的距离之和为:

−∑xi∈My(i)θ∙x(i)/||θ||2
分子和分母都含有θ,当分子的θ扩大N倍时,分母的L2范数也会扩大N倍。也就是说,分子和分母有固定的倍数关系。那么我们可以固定分子或者分母为1,然后求另一个即分子自己或者分母的倒数的最小化作为损失函数,这样可以简化我们的损失函数。在感知机模型中,我们采用的是保留分子,最终感知机模型的损失函数简化为:

J(θ)=−∑xi∈My(i)θ∙x(i)
模型优化:可以使用梯度下降法或者牛顿法,常使用梯度下降法
其实在求解机器学习里的模型参数,即无约束优化问题时,梯度下降经常使用,还有一种就是最小二乘法
梯度:在微积分里,对多元函数的参数求偏导,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。几何意义来说媒体度向量就是函数变化增加最快的地方,
例子:对于函数f(x,y),在点(x0,y0),沿着梯度向量的方向就是(∂f/∂x0, ∂f/∂y0)T的方向是f(x,y)增加最快的地方。或者说,沿着梯度向量的方向,更加容易找到函数的最大值。反过来说,沿着梯度向量相反的方向,也就是 -(∂f/∂x0, ∂f/∂y0)T的方向,梯度减少最快,也就是更加容易找到函数的最小值。

偏差<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值