8.13 Prototypical Networks 原型网络

原型网络是一种解决few-shot分类问题的元学习方法。它通过学习将输入映射到embedding空间,用每个类支持数据的embedding均值作为原型,进行分类预测。在zero-shot学习中,原型基于类的元数据向量生成。模型通过最小化负对数似然进行训练,距离函数的选择如平方欧几里得距离会影响模型表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


👉 8.7 Meta learning元学习全面理解、MAML、Reptile

8.8LSTM作为元学习器学习梯度下降

8.9 元学习网络结构讲解

prototypical networks (原型网络) 解决few-shot 分类问题 的元学习方法。

few-shot 分类就是test data 有很多新的类,每个新类的只有少量例子。

原型网络学习一个embedding空间,在这个空间中,分类可以通过计算每个类的原型表示的距离来执行。

1、前言

对于few-shot learning ,原型网络将输入经过非线性映射到embedding空间,对每一个类的support数据的embedding求均值,然后将这个均值作为该类的原型,对query set 样例进行预测的时候,样例的embedding和这些原型哪个最接近便分到该类别。

对于zero-shot learning ,不是由每个类support集得到聚类点,而是给每个类一个meta-data向量

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炫云云

你的鼓励是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值