文章目录
👉 8.7 Meta learning元学习全面理解、MAML、Reptile
prototypical networks (原型网络) 解决few-shot 分类问题 的元学习方法。
few-shot 分类就是test data 有很多新的类,每个新类的只有少量例子。
原型网络学习一个embedding空间,在这个空间中,分类可以通过计算每个类的原型表示的距离来执行。
1、前言
对于few-shot learning ,原型网络将输入经过非线性映射到embedding空间,对每一个类的support数据的embedding求均值,然后将这个均值作为该类的原型,对query set 样例进行预测的时候,样例的embedding和这些原型哪个最接近便分到该类别。
对于zero-shot learning ,不是由每个类support集得到聚类点,而是给每个类一个meta-data向量