3.4 Spark RDD运行架构

本文详细介绍了Spark中的核心概念RDD,包括RDD的定义、特性、运行原理、依赖关系和Shuffle操作。RDD是弹性分布式数据集,具有高效容错性和内存优化,通过血缘关系(Lineage)实现容错。文章还探讨了Spark架构设计,如Driver、Executor、Stage等,并解释了Spark运行流程,以及RDD的创建和不同类型的依赖。最后,讨论了Spark中的Shuffle操作和几种Join方式,如Shuffle Hash Join、Broadcast Hash Join和Sort Merge Join,强调了Shuffle对性能的影响和优化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本概念

1、什么是RDD

  • RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的 数据抽象 \color{#70f3ff}{\boxed{\color{green}{\text{数据抽象}}}}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炫云云

你的鼓励是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值