
本文详细介绍了Spark中的核心概念RDD,包括RDD的定义、特性、运行原理、依赖关系和Shuffle操作。RDD是弹性分布式数据集,具有高效容错性和内存优化,通过血缘关系(Lineage)实现容错。文章还探讨了Spark架构设计,如Driver、Executor、Stage等,并解释了Spark运行流程,以及RDD的创建和不同类型的依赖。最后,讨论了Spark中的Shuffle操作和几种Join方式,如Shuffle Hash Join、Broadcast Hash Join和Sort Merge Join,强调了Shuffle对性能的影响和优化方法。