【书生·浦语实战营】进阶岛第4关:InternVL 多模态模型部署微调实践

任务目标

  • follow 教学文档和视频使用QLoRA进行微调模型,复现微调效果,并能成功讲出梗图.
  • 尝试使用LoRA,或调整xtuner的config,如LoRA rank,学习率。看模型Loss会如何变化,并记录调整后效果(选做,使用LoRA或调整config可以二选一)

学习内容

InternVL

什么是InternVL

InternVL 是一种用于多模态任务的深度学习模型,旨在处理和理解多种类型的数据输入,如图像和文本。它结合了视觉和语言模型,能够执行复杂的跨模态任务,比如图文匹配、图像描述生成等。通过整合视觉特征和语言信息,InternVL 可以在多模态领域取得更好的表现

InternVL 模型总览

在这里插入图片描述
对于InternVL这个模型来说,它vision模块就是一个微调过的ViT,llm模块是一个InternLM的模型。对于视觉模块来说,它的特殊之处在Dynamic High Resolution。

Dynamic High Resolution

动态高分辨率,为了让ViT模型能够尽可能获取到更细节的图像信息,提高视觉特征的表达能力。对于输入的图片,首先resize成448的倍数,然后按照预定义的尺寸比例从图片上crop对应的区域。细节如图所示。
在这里插入图片描述

Pixel Shuffle

Pixel Shuffle在超分任务中是一个常见的操作,PyTorch中有官方实现,即nn.PixelShuffle(upscale_factor) 该类的作用就是将一个tensor中的元素值进行重排列,假设tensor维度为[B, C, H, W], PixelShuffle操作不仅可以改变tensor的通道数,也会改变特征图的大小。

InternVL 部署微调实践

我们选定的任务是让InternVL-2B生成文生图提示词,这个任务需要VLM对图片有格式化的描述并输出。
让我们来一起完成一个用VLM模型进行冷笑话生成,让你的模型说出很逗的冷笑话吧。在这里,我们微调InterenVL使用xtuner。部署InternVL使用lmdeploy。

准备InternVL模型

我们使用InternVL2-2B模型。该模型已在share文件夹下挂载好,现在让我们把移动出来。

cd /root
mkdir -p model

cp 模型

cp -r /root/share/new_models/OpenGVLab/InternVL2-2B /root/model/

准备环境

这里我们来手动配置下xtuner。

  • 配置虚拟环境
 conda create --name xtuner python=3.10 -y

# 激活虚拟环境(注意:后续的所有操作都需要在这个虚拟环境中进行)
conda activate xtuner

# 安装一些必要的库
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
apt install libaio-dev
pip install transformers==4.39.3
pip install streamlit==1.36.0
  • 安装xtuner
# 创建一个目录,用来存放源代码
mkdir -p /root/InternLM/code

cd /root/InternLM/code

git clone -b v0.1.23  https://github.com/InternLM/XTuner
  • 进入XTuner目录
 cd /root/InternLM/code/XTuner
pip install -e '.[deepspeed]'
  • 安装LMDeploys
 pip install lmdeploy==0.5.3
  • 安装验证
xtuner version

##命令

xtuner help

在这里插入图片描述

准备微调数据集

我们这里使用huggingface上的zhongshsh/CLoT-Oogiri-GO据集

@misc{zhong2023clot,
  title={Let's Think Outside the Box: Exploring Leap-of-Thought in Large Language Models with Creative Humor Generation},
  author={Zhong, Shanshan and Huang, Zhongzhan and Gao, Shanghua and Wen, Weushao and Lin, Liang and Zitnik, Marinka and Zhou, Pan},
  journal={arXiv preprint arXiv:2312.02439},
  year={2023}
}

在这里插入图片描述
数据集我们从官网下载下来并进行去重,只保留中文数据等操作。并制作成XTuner需要的形式。并已在share里,我们一起从share里挪出数据集。

## 首先让我们安装一下需要的包
pip install datasets matplotlib Pillow timm

## 让我们把数据集挪出来
cp -r /root/share/new_models/datasets/CLoT_cn_2000 /root/InternLM/datasets/

让我们打开数据集的一张图看看,我们选择jsonl里的第一条数据对应的图片。首先我们先把这张图片挪动到InternLM文件夹下面。

cp InternLM/datasets/ex_images/MjxjVcrFf9TFLbr2BKR4Py1L5qAic8K4VzEQAsTph0ztWe9vj3d8DGDdAC3tJV0aiaOrSBcsKpBIXIAh6O1CDXcA.jpg InternLM/

在这里插入图片描述
给到的冷笑话回复是:
在这里插入图片描述

InternVL 推理部署攻略

使用pipeline进行推理

我们使用lmdeploy自带的pipeline工具进行开箱即用的推理流程,首先我们新建一个文件。

touch /root/InternLM/code/test_lmdeploy.py
cd /root/InternLM/code/

然后把以下代码拷贝进test_lmdeploy.py中。

from lmdeploy import pipeline
from lmdeploy.vl import load_image

pipe = pipeline('/root/model/InternVL2-2B')

image = load_image('/root/InternLM/MjxjVcrFf9TFLbr2BKR4Py1L5qAic8K4VzEQAsTph0ztWe9vj3d8DGDdAC3tJV0aiaOrSBcsKpBIXIAh6O1CDXcA.jpg')
response = pipe(('请你根据这张图片,讲一个脑洞大开的梗', image))
print(response.text)

运行执行推理结果。

python3 test_lmdeploy.py

推理后我们发现直接使用2b模型不能很好的讲出梗,现在我们要对这个2b模型进行微调。
在这里插入图片描述

InternVL 微调攻略

准备数据集

数据集格式为:

# 为了高效训练,请确保数据格式为:
{
   
    "id": "000000033471",
    "image": ["coco/train2017/000000033471.jpg"], # 如果是纯文本,则该字段为 None 或者不存在
    "conversations": [
      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值