文章目录
任务目标
- follow 教学文档和视频使用QLoRA进行微调模型,复现微调效果,并能成功讲出梗图.
- 尝试使用LoRA,或调整xtuner的config,如LoRA rank,学习率。看模型Loss会如何变化,并记录调整后效果(选做,使用LoRA或调整config可以二选一)
学习内容
InternVL
什么是InternVL
InternVL 是一种用于多模态任务的深度学习模型,旨在处理和理解多种类型的数据输入,如图像和文本。它结合了视觉和语言模型,能够执行复杂的跨模态任务,比如图文匹配、图像描述生成等。通过整合视觉特征和语言信息,InternVL 可以在多模态领域取得更好的表现
InternVL 模型总览
对于InternVL这个模型来说,它vision模块就是一个微调过的ViT,llm模块是一个InternLM的模型。对于视觉模块来说,它的特殊之处在Dynamic High Resolution。
Dynamic High Resolution
动态高分辨率,为了让ViT模型能够尽可能获取到更细节的图像信息,提高视觉特征的表达能力。对于输入的图片,首先resize成448的倍数,然后按照预定义的尺寸比例从图片上crop对应的区域。细节如图所示。
Pixel Shuffle
Pixel Shuffle在超分任务中是一个常见的操作,PyTorch中有官方实现,即nn.PixelShuffle(upscale_factor) 该类的作用就是将一个tensor中的元素值进行重排列,假设tensor维度为[B, C, H, W], PixelShuffle操作不仅可以改变tensor的通道数,也会改变特征图的大小。
InternVL 部署微调实践
我们选定的任务是让InternVL-2B生成文生图提示词,这个任务需要VLM对图片有格式化的描述并输出。
让我们来一起完成一个用VLM模型进行冷笑话生成,让你的模型说出很逗的冷笑话吧。在这里,我们微调InterenVL使用xtuner。部署InternVL使用lmdeploy。
准备InternVL模型
我们使用InternVL2-2B模型。该模型已在share文件夹下挂载好,现在让我们把移动出来。
cd /root
mkdir -p model
cp 模型
cp -r /root/share/new_models/OpenGVLab/InternVL2-2B /root/model/
准备环境
这里我们来手动配置下xtuner。
- 配置虚拟环境
conda create --name xtuner python=3.10 -y
# 激活虚拟环境(注意:后续的所有操作都需要在这个虚拟环境中进行)
conda activate xtuner
# 安装一些必要的库
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
apt install libaio-dev
pip install transformers==4.39.3
pip install streamlit==1.36.0
- 安装xtuner
# 创建一个目录,用来存放源代码
mkdir -p /root/InternLM/code
cd /root/InternLM/code
git clone -b v0.1.23 https://github.com/InternLM/XTuner
- 进入XTuner目录
cd /root/InternLM/code/XTuner
pip install -e '.[deepspeed]'
- 安装LMDeploys
pip install lmdeploy==0.5.3
- 安装验证
xtuner version
##命令
xtuner help
准备微调数据集
我们这里使用huggingface上的zhongshsh/CLoT-Oogiri-GO据集
@misc{zhong2023clot,
title={Let's Think Outside the Box: Exploring Leap-of-Thought in Large Language Models with Creative Humor Generation},
author={Zhong, Shanshan and Huang, Zhongzhan and Gao, Shanghua and Wen, Weushao and Lin, Liang and Zitnik, Marinka and Zhou, Pan},
journal={arXiv preprint arXiv:2312.02439},
year={2023}
}
数据集我们从官网下载下来并进行去重,只保留中文数据等操作。并制作成XTuner需要的形式。并已在share里,我们一起从share里挪出数据集。
## 首先让我们安装一下需要的包
pip install datasets matplotlib Pillow timm
## 让我们把数据集挪出来
cp -r /root/share/new_models/datasets/CLoT_cn_2000 /root/InternLM/datasets/
让我们打开数据集的一张图看看,我们选择jsonl里的第一条数据对应的图片。首先我们先把这张图片挪动到InternLM文件夹下面。
cp InternLM/datasets/ex_images/MjxjVcrFf9TFLbr2BKR4Py1L5qAic8K4VzEQAsTph0ztWe9vj3d8DGDdAC3tJV0aiaOrSBcsKpBIXIAh6O1CDXcA.jpg InternLM/
给到的冷笑话回复是:
InternVL 推理部署攻略
使用pipeline进行推理
我们使用lmdeploy自带的pipeline工具进行开箱即用的推理流程,首先我们新建一个文件。
touch /root/InternLM/code/test_lmdeploy.py
cd /root/InternLM/code/
然后把以下代码拷贝进test_lmdeploy.py中。
from lmdeploy import pipeline
from lmdeploy.vl import load_image
pipe = pipeline('/root/model/InternVL2-2B')
image = load_image('/root/InternLM/MjxjVcrFf9TFLbr2BKR4Py1L5qAic8K4VzEQAsTph0ztWe9vj3d8DGDdAC3tJV0aiaOrSBcsKpBIXIAh6O1CDXcA.jpg')
response = pipe(('请你根据这张图片,讲一个脑洞大开的梗', image))
print(response.text)
运行执行推理结果。
python3 test_lmdeploy.py
推理后我们发现直接使用2b模型不能很好的讲出梗,现在我们要对这个2b模型进行微调。
InternVL 微调攻略
准备数据集
数据集格式为:
# 为了高效训练,请确保数据格式为:
{
"id": "000000033471",
"image": ["coco/train2017/000000033471.jpg"], # 如果是纯文本,则该字段为 None 或者不存在
"conversations": [