
python深度学习
配置tensorrt环境(tensorrt 和 pycuda) -- pth模型转 onnx -- onnx 验证 --- onnx 转 tensorrt -- tensorrt 调用
嘿,不许笑
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
求人脸底库匹配用时统计记录
因为要对比不同显卡的算力,顺便测试从底库中查找一个人员的用时,做记录原创 2024-02-22 19:03:00 · 485 阅读 · 0 评论 -
关于pytorch指定了gpu还是占用了别的gpu的显存的问题
莫名占用别的gpu原创 2023-02-07 13:58:38 · 2445 阅读 · 4 评论 -
pytorch-git模型保存与使用
pytorch jit 跟踪模型保存和使用介绍原创 2023-02-02 11:23:51 · 761 阅读 · 0 评论 -
环境配置 Torch~
配置torch时遇到的一些问题~原创 2022-04-08 13:16:59 · 1837 阅读 · 0 评论 -
安装paddle时遇到的一个问题
安装paddle时报错 runtimeerror the third party dynamic library() that paddle depends on is not configured correctly原创 2022-06-30 15:02:10 · 1503 阅读 · 0 评论 -
多分类混淆矩阵计算
多分类混淆矩阵计算及具体说明原创 2022-07-13 17:30:20 · 1131 阅读 · 0 评论 -
npu推理代码
npu 推理代码(这个直接抄的朋友的代码~我试过可以运行,不过环境配置挺费劲的。。)我一般也用不到npu,这里就放在这儿,以备不时之需吧。python3 -m bmnetp --model=mnist_jit_0.98.pth --shapes="[(1,1,28,28)]" --net_name="mnist" --target=BM1684 --outdir=.import sysimport cv2import numpy as npimport sophon.sail as sail原创 2022-04-18 11:49:41 · 1424 阅读 · 0 评论 -
pytorch 图像前处理
记录一些常用的前处理,每次都重写也是很费劲。。```pythonimport cv2import numpy as np# 不失真resize 在resize时加上黑边def distortionless_resize(img_org,target_size = (112,112)): h,w,c = img_org.shape target_w,target_h = target_size if target_h==target_w: if h==w: new_原创 2021-11-11 18:42:08 · 1543 阅读 · 0 评论 -
关于torch.renorm的一些理解和np复写
注:可直接跳至后面查看代码和解释起因:今天把一个训练好的人脸识别模型 放到 比特大陆的盒子上进行部署,因为比特大陆盒子上使用的npu,在模型转换的时候报错不支持的op renorm(转换模型的方法在前面的文章有,摘同事的代码,好像需要配置环境,回头让他帮忙写下)renorm然后就搜了下renorm的意思官网的解释如上。我的代码长这样:既然转换时不支持此op,所以就把最后的renorm代码去掉了,直接返回 self.seq(x)然后把renorm当作结果的后处理进行处理。renor原创 2022-04-22 18:16:40 · 3082 阅读 · 1 评论 -
关于torchvison.ops 没有 nms的解决办法
重写torchvision ops 的nms 方法原创 2023-01-13 10:30:04 · 1146 阅读 · 1 评论 -
pytorch pth模型转onnx
转换方法:使用pytorch自带转换函数转换import torch# 实例你的模型net = MyModel()print('load static dict')# 加载参数! (如果忘记的话,,,就重来呗)net.load_state_dict(torch.load("net.pth", map_location=torch.device('cpu')))net.eval().cuda()print('to cuda')input1 = torch.randn(1, 3, 112原创 2021-11-25 11:11:44 · 1663 阅读 · 3 评论 -
onnx 转 trt 并使用trt模型推理
命令:/usr/src/tensorrt/bin/trtexec --onnx=input.onnx --saveEngine=out.engine --fp16 --workspace=1024参数含义:/usr/src/tensorrt/bin/trtexec: 你的tensorrt的地址–onnx: 需要转换的onnx模型路径–saveEngine: 保存的模型地址名称–fp16: 保存出的模型的精度–workspace: 运行空间大小(貌似没卵用)参考nVidia tensorr原创 2021-11-25 15:03:33 · 4310 阅读 · 3 评论 -
关于pytorch使用时 内存飙升的问题记录
问题这次做了一个人脸检测加识别的项目,由于开发在服务器上开发,没发现问题,但是当部署到jetson盒子上时发现内存会异常增高。以下是记录总结在使用pytorch gpu运行时,会开辟额外的空间,网上有理论说在gpu上pytorch有自己的函数等,所以会异常占用,另外在cpu上检测模型加载时内存也很高的问题,还没有比较合理的解释,不过我在 后面转换为tensorrt之后发现及时只在开头引入了pytorch序列化函数,后面内存也会多占用2个g左右。解决办法坦白说,并没有找到什么解决办法,最好的办法就原创 2021-11-25 10:52:44 · 6528 阅读 · 1 评论 -
linux(arm)配置 pycuda 环境记录
先说安装方法pip3 install pycuda目前我看到的pycuda版本有 19年 和 21 年两个版本这里有几个点要注意:1、不要用清华镜像,也不要下github上的源码编译(我没跑通。。)2、numpy 版本号会影响是否安装成功,我测试的 1.19.4 可以3、cuda的环境变量要配好(nvcc -V 可以查到)然后直接用pip安装,编译时间较长,请耐心等待另外 sudo apt install python3-pycuda 失败我这里是在jetson下安装,或许其他环境可以原创 2021-11-25 10:28:06 · 1853 阅读 · 0 评论