allegro原理图网表导出以及PCB网表导入教程

概述:本文详细介绍了,allegro如何进行原理图网表导出,和PCB网表导入的具体流程。最后查看网表是否导入成功。

一、allegro原理图网表导出

1、选择原理图的根目录
在这里插入图片描述
2、点击如下图所示的带N的图标
在这里插入图片描述
3、弹出如下图所示的对话框,点击确定。他会在这个原理图对应的文件夹下新建一个allegro的文件夹用来存放网表
在这里插入图片描述
4、根据提示点击是,创建这个文件夹。
在这里插入图片描述
5、网表创建完成,在下方的提示框里也会出现这个文件夹的提示信息
在这里插入图片描述
顺着这个文件夹,找到相应的文件,如下图所示。
在这里插入图片描述
到这一步,网表导出完成。

二、allegro PCB网表导入教程

1、点击allegro PCB设计工具,在该文件夹下新建一个PCB文件,进行下图选项设置。创建PCB文件
在这里插入图片描述
2、点击菜单栏上的File——Import——Logic,
进行如下设置:
在这里插入图片描述
上图中的1表示这个网表的来源,为Capture设计,2表示忽略原理图某些锁定的属性,3表示导入的路径,选择刚才创建的allegro文件。4导入。
3、弹出的对话框显示,网表导入成功。
在这里插入图片描述
也可以点击下图所示的箭头,查看网表是否导入成功。
在这里插入图片描述

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值