LeetCode 热题 HOT 100 (221. 最大正方形)

问题描述

在一个由字符 '0''1' 组成的二维矩阵中,找到只包含 '1' 的最大正方形,并返回其面积。

例如:

  • 示例 1:

    • 输入:
      matrix = [
        ["1","0","1","0","0"],
        ["1","0","1","1","1"],
        ["1","1","1","1","1"],
        ["1","0","0","1","0"]
      ]
      
    • 输出:4
      解释:最大正方形的边长为 2,面积 2×2 = 4。
  • 示例 2:

    • 输入:
      matrix = [
        ["0","1"],
        ["1","0"]
      ]
      
    • 输出:1
  • 示例 3:

    • 输入:
      matrix = [["0"]]
      
    • 输出:0

第一部分:基础知识

1. 二维矩阵

  • 二维矩阵可以理解为由行和列组成的表格。在 Java 中,我们通常使用二维数组来表示它,例如:
    char[][] matrix = {
        {'1', '0', '1', '0', '0'},
        {'1', '0', '1', '1', '1'},
        {'1', '1', '1', '1', '1'},
        {'1', '0', '0', '1', '0'}
    };
    
  • 每个元素可以通过 matrix[i][j] 访问,其中 i 表示行号,j 表示列号。

2. 动态规划(Dynamic Programming,DP)

  • 动态规划是一种解决最优化问题的技巧。其思想是将大问题拆解成若干个小问题,并将小问题的解保存下来,避免重复计算。
  • 在本题中,我们希望找出以某个位置为右下角的正方形的最大边长,从而推导出全局的最大正方形面积。

3. 状态定义

  • 定义二维数组 dp,其中 dp[i][j] 表示matrix[i][j] 为右下角的正方形的最大边长。
  • 如果 matrix[i][j]'1',那么该位置的正方形边长取决于其上方、左侧和左上角三个位置的正方形边长:
    dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1;
    
  • 如果 matrix[i][j]'0',则 dp[i][j] = 0,因为不能构成全为 '1' 的正方形。

4. 边界处理

  • 对于第一行和第一列,由于没有上方或左侧的元素,所以直接令:
    dp[i][j] = matrix[i][j] - '0';
    
    这里的 matrix[i][j] - '0' 是将字符 '1''0' 转换为数字 1 或 0。

第二部分:题目解题思路

1. 构建 DP 数组

  • 首先,建立与 matrix 大小相同的二维整数数组 dp
  • 遍历矩阵:
    • 如果在第一行或第一列,直接赋值为 matrix[i][j] - '0'
    • 如果 matrix[i][j]'1',则:
      dp[i][j] = Math.min(Math.min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1;
      
    • 否则,dp[i][j] = 0

2. 更新最大边长

  • 在遍历过程中,不断更新一个变量 maxSide,记录遇到的最大正方形边长。

3. 计算面积

  • 最后,正方形的面积为 maxSide * maxSide

第三部分:Java 代码实现

下面是完整的 Java 实现代码,并附有详细注释:

public class Solution {
    public int maximalSquare(char[][] matrix) {
        int m = matrix.length;              // 行数
        if (m == 0) return 0;               // 如果矩阵为空,返回 0
        int n = matrix[0].length;           // 列数
        int[][] dp = new int[m][n];         // dp 数组,存放以 (i, j) 为右下角的最大正方形边长
        int maxSide = 0;                    // 记录最大正方形边长
        
        // 遍历整个矩阵
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                // 如果在第一行或第一列,只能取矩阵中的值
                if (i == 0 || j == 0) {
                    dp[i][j] = matrix[i][j] - '0';  // 转换字符 '1' 或 '0' 为数字 1 或 0
                } else if (matrix[i][j] == '1') {
                    // 状态转移:以 (i, j) 为右下角的正方形边长取决于其上、左、左上三个位置的最小值
                    dp[i][j] = Math.min(Math.min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1;
                } else {
                    dp[i][j] = 0;  // 如果当前为 '0',则不能构成正方形
                }
                // 更新最大正方形的边长
                maxSide = Math.max(maxSide, dp[i][j]);
            }
        }
        
        // 返回最大正方形的面积
        return maxSide * maxSide;
    }
    
    // 主方法用于测试
    public static void main(String[] args) {
        Solution sol = new Solution();
        
        char[][] matrix1 = {
            {'1','0','1','0','0'},
            {'1','0','1','1','1'},
            {'1','1','1','1','1'},
            {'1','0','0','1','0'}
        };
        System.out.println("最大正方形面积: " + sol.maximalSquare(matrix1));
        // 预期输出: 4
        
        char[][] matrix2 = {
            {'0','1'},
            {'1','0'}
        };
        System.out.println("最大正方形面积: " + sol.maximalSquare(matrix2));
        // 预期输出: 1
        
        char[][] matrix3 = {
            {'0'}
        };
        System.out.println("最大正方形面积: " + sol.maximalSquare(matrix3));
        // 预期输出: 0
    }
}

第四部分:详细解析代码与动态规划

1. 状态定义

  • 状态 dp[i][j] 表示以 (i, j) 为右下角的、只包含 '1' 的正方形的最大边长。

2. 状态转移方程

  • 对于 matrix[i][j] == '1'

    dp[i][j] = Math.min(Math.min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1;
    

    这表示:要构成一个以 (i, j) 为右下角的正方形,要求:

    • (i-1, j) 位置的正方形边长;
    • (i, j-1) 位置的正方形边长;
    • (i-1, j-1) 位置的正方形边长;

    三者的最小值再加 1,就是当前位置的最大正方形边长。

  • 如果 matrix[i][j]'0',则 dp[i][j] 为 0,因为当前位置不能构成全为 '1' 的正方形。

3. 边界条件

  • 对于第一行和第一列,由于没有上边或左边的元素,我们直接将 dp[i][j] 设为 matrix[i][j] - '0'

4. 动态规划的思路

  • 我们从左上角开始填充 dp 数组,逐行逐列计算每个位置的最大正方形边长,并同时更新全局最大边长 maxSide
  • 最终,最大正方形的面积就是 maxSide * maxSide

总结

  • 基础知识:

    • 二维矩阵的表示方法;
    • 动态规划的基本思想和状态转移方程。
  • 问题思路:

    • 定义状态 dp[i][j] 表示以 (i, j) 为右下角的最大正方形边长;
    • 使用状态转移方程计算每个位置的值,并更新最大边长。
  • Java 实现:

    • 通过两重循环填充 dp 数组,最后计算最大正方形面积。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值