Vision Transformers for Single Image Dehazing代码解读

文章详细描述了深度学习去雾模型DehazeFormer的配置参数、数据加载器PairLoader和SingleLoader的实现,以及train.py和test.py脚本中的训练和测试流程,包括PSNR和SSIM指标。还介绍了自定义的BalancedDataParallel类用于并行计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录结构:

配置文件,里面包含了一些超参数和模型设置的选项。

  • "batch_size": 32,代表训练时每个batch使用的样本数。
  • "patch_size": 256,代表将原始图像切成多少大小为256x256的小块进行训练。
  • "valid_mode": "test",代表验证集使用的数据集,这里是test。
  • "edge_decay": 0,代表去除图像边缘的程度,这里为0。
  • "only_h_flip": false,代表是否只使用水平翻转数据扩增,这里为false。
  • "optimizer": "adamw",代表使用的优化器,这里是AdamW。
  • "lr": 4e-4/,代表学习率,这里是4e-4或2e-4。
  • "epochs":300,代表训练的总epoch数。
  • "eval_freq": 1,代表每多少个epoch输出一次验证集的结果,输出psnr和ssim的值。

自己训练的话,创建一个配置文件来训练。

loader.py实现了一个数据加载器。其中包括两个类:PairLoaderSingleLoader。

PairLoader用于对图像进行配对加载,即同时加载原始图像和目标图像,原始图像存放在 hazy 目录下,目标图像存放在 GT 目录下。其中 data_dir 是数据集的根目录,sub_dir 是数据集子目录(比如训练集、验证集等),mode 是数据加载模式,支持三种模式:训练模式、验证模式和测试模式。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值