Flink实时电商数仓(八)

本文描述了一种通过Kafka页面日志实时处理系统,统计七日回流用户和独立登录用户的方法。使用Flink流处理框架,对数据进行清洗、分组、判断用户类型并进行窗口聚合,最终写入Doris数据库。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用户域登录各窗口汇总表

  • 主要任务:从kafka页面日志主题读取数据,统计
    • 七日回流用户:之前活跃的用户,有一段时间不活跃了,之后又开始活跃,称为回流用户
    • 当日独立用户数:同一个用户当天重复登录,只算作一个独立用户。

思路分析

  1. 读取kafka页面主题数据
  2. 转换数据结构:String -> JSONObject
  3. 过滤数据,uid不为null
    • 登录的两种情况
      • 用户打开应用后自动登录
      • 用户打印应用后没有登录,浏览后跳转到登录页面
    • 过滤条件:
      • uid不为null且last_page_id is null
      • last_page_id = login
  4. 设置水位线
  5. 按照uid分组
  6. 统计回流用户数和独立用户数
  7. 开窗聚合
  8. 写入doris

具体实现

  1. 设置端口、并行度、消费者组、kafka主题
  2. 读取dwd页面主题数据
    - stream.print()
  3. 对数据进行清洗过滤:uid不为空
    • stream.flatMap()使用flatMap过滤
    • new FlatMapFunction<>(){}在该方法内部转换为JSONObject, 并且获取uid和lastPageId, try-catch这段代码
    • 判断是否满足思路分析中的条件,如果中途发生异常,直接catch后打印到控制台清理掉即可。
  4. 先注册水位线
    • jsonObjStream.assignTimestampAndWatermark
    • new SerializableTimestampAssigner<>, 提取数据中的ts
  5. 按照uid分组
    • stream.keyby()按照uid进行分组
  6. 判断独立用户和回流用户
    • 创建UserLoginBean, 使用状态保存用户的登录信息
    • 在open方法中,getRuntimeContext().getState(new ValueStateDescriptor<>("last_login_dt",String.class))创建状态记录用户上一次的登录时间
    • processElement方法中比较当前登录的日期和状态存储的日期
      • 如果lastLoginDt==null是新用户
      • 如果不为空,判断上次登录时间和当前时间的差值是否大于7天;如果大于7天,说明是回流用户。
      • 如果小于7天,还需要判断上次登录时间是否是今天,如果不是今天,则说明该用户本次是独立用户。
  7. 开窗聚合
    • 使用滚动窗口开窗聚合
    • reduce算子中写聚合逻辑
    • process算子中获取窗口信息
  8. 写入doris
    • 创建doris sink,写出到doris

核心代码

public static void main(String[] args) {
        new DwsUserUserLoginWindow().start(10024,4,"dws_user_user_login_window", Constant.TOPIC_DWD_TRAFFIC_PAGE);
    }

    @Override
    public void handle(StreamExecutionEnvironment env, DataStreamSource<String> stream) {
        //1.读取dwd页面数据
        //stream.print();

        //2. 对数据进行清洗过滤
        SingleOutputStreamOperator<JSONObject> jsonObjStream = etl(stream);

        //3. 注册水位线
        SingleOutputStreamOperator<JSONObject> withWatermarkStream = addWatermark(jsonObjStream);

        //4. 按照uid分组
        KeyedStream<JSONObject, String> keyedStream = getKeyedStream(withWatermarkStream);

        //5. 判断独立用户和回流用户
        SingleOutputStreamOperator<UserLoginBean> processedStream = getUserLoginBeanStream(keyedStream);

        //processedStream.print();

        //开窗聚合
        SingleOutputStreamOperator<UserLoginBean> reducedStream = getReducedStream(processedStream);

        //reducedStream.print();

        //写入Doris
        reducedStream.map(new DorisMapFunction<>())
                .sinkTo(FlinkSinkUtil.getDorisSink(Constant.DWS_USER_USER_LOGIN_WINDOW));


    }

[gitee仓库地址:(https://gitee.com/langpaian/gmall2023-realtime)

一、课程简介随着技术的飞速发展,经过多年的数据积累,各互联网公司已保存了海量的原始数据和各种业务数据,所以数据库技术是各大公司目前都需要着重发展投入的技术领域。数据库是面向分析的集成化数据环境,为企业所有决策制定过程,提供系统数据支持的战略集合。通过对数据库中数据的分析,可以帮助企业改进业务流程、控制成本、提高产品质量等。二、课程内容本次精心打造的数项目的课程,从项目架构的搭建,到数据采集模块的设计、数架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解不同版本框架的区别联系,将大数据全生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。三、课程目标本课程以国内商巨头实际业务应用场景为依托,对商数的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每日、周、月活跃设备明细,留存用户比例,沉默用户回流用户、流失用户统计,最近连续3周活跃用户统计,最近7天内连续3天活跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观全面的实战经验。通过对本课程的学习,对数项目可以建立起清晰明确的概念,系统全面的掌握各项数项目技术,轻松应对各种数难题。四、课程亮点本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值