复广义平稳随机过程的数学原理
复广义平稳(Complex Wide Sense Stationary, 复WSS)随机过程是现代信号处理与通信系统中的核心数学工具。与实数域的WSS过程相比,复WSS过程能够同时描述信号的幅度和相位信息,在无线通信、雷达信号处理和数字调制系统中发挥着不可替代的作用。本文将从数学定义出发,系统阐述复WSS过程的理论基础、关键性质及其在工程中的广泛应用。复WSS随机过程的研究始于20世纪中叶,随着无线通信技术的发展而日益重要。当我们需要处理带通信号的基带表示,或者分析包含同相和正交分量的调制信号时,复数域的随机过程理论提供了更为简洁和高效的数学框架。
复WSS随机过程的数学定义与基本概念
设 {X(t),t∈R}\{X(t), t \in \mathbb{R}\}{X(t),t∈R} 为一复随机过程,其中 X(t)=XR(t)+jXI(t)X(t) = X_R(t) + jX_I(t)X(t)=XR(t)+jXI(t),XR(t)X_R(t)XR(t) 和 XI(t)X_I(t)XI(t) 分别为实部和虚部过程。该过程被称为广义平稳,当且仅当满足以下两个条件:
- 均值平稳性:E[X(t)]=μXE[X(t)] = \mu_XE[X(t)]=μX(常数),对所有 t∈Rt \in \mathbb{R}t∈R 成立
- 协方差平稳性:自相关函数 RXX(t1,t2)=RXX(t1−t2)=RXX(τ)R_{XX}(t_1, t_2) = R_{XX}(t_1 - t_2) = R_{XX}(\tau)RXX(t1,t2)=RXX(t1−t2)=RXX(τ)
对于复随机过程,自相关函数的定义为:
RXX(τ)=E[X(t+τ)X∗(t)]R_{XX}(\tau) = E[X(t+\tau)X^*(t)]RXX(τ)=E[X(t+τ)X∗(t)]
其中 X∗(t)X^*(t)X∗(t) 表示 X(t)X(t)X(t) 的复共轭。将 X(t)X(t)X(t) 展开为实部和虚部,可得:
RXX(τ)=E[(XR(t+τ)+jXI(t+τ))(XR(t)−jXI(t))]R_{XX}(\tau) = E[(X_R(t+\tau) + jX_I(t+\tau))(X_R(t) - jX_I(t))]RXX(τ)=E[(XR(t+τ)+jXI(t+τ))(XR(t)−jXI(t))]
展开后得到:
RXX(τ)=E[XR(t+τ)XR(t)]+E[XI(t+τ)XI(t)]+j(E[XI(t+τ)XR(t)]−E[XR(t+τ)XI(t)])R_{XX}(\tau) = E[X_R(t+\tau)X_R(t)] + E[X_I(t+\tau)X_I(t)] + j(E[X_I(t+\tau)X_R(t)] - E[X_R(t+\tau)X_I(t)])RXX(τ)=E[XR(t+τ)XR(t)]+E[XI(t+τ)XI(t)]+j(E[XI(t+τ)XR(t)]−E[XR(t+τ)XI(t)])
记 RRR(τ)=E[XR(t+τ)XR(t)]R_{RR}(\tau) = E[X_R(t+\tau)X_R(t)]RRR(τ)=E[XR(t+τ)XR(t)],RII(τ)=E[XI(t+τ)XI(t)]R_{II}(\tau) = E[X_I(t+\tau)X_I(t)]RII(τ)=E[XI(t+τ)XI(t)],RRI(τ)=E[XR(t+τ)XI(t)]R_{RI}(\tau) = E[X_R(t+\tau)X_I(t)]RRI(τ)=E[XR(t+τ)XI(t)],RIR(τ)=E[XI(t+τ)XR(t)]R_{IR}(\tau) = E[X_I(t+\tau)X_R(t)]RIR(τ)=E[XI(t+τ)XR(t)],则:
RXX(τ)=[RRR(τ)+RII(τ)]+j[RIR(τ)−RRI(τ)]R_{XX}(\tau) = [R_{RR}(\tau) + R_{II}(\tau)] + j[R_{IR}(\tau) - R_{RI}(\tau)]RXX(τ)=[RRR(τ)+RII(τ)]+j[RIR(τ)−RRI(τ)]
自相关函数的性质与功率谱密度
厄米特对称性的证明
复WSS过程的自相关函数具有厄米特对称性:RXX(τ)=RXX∗(−τ)R_{XX}(\tau) = R_{XX}^*(-\tau)RXX(τ)=RXX∗(−τ)。
证明:根据定义,
RXX(τ)=E[X(t+τ)X∗(t)]R_{XX}(\tau) = E[X(t+\tau)X^*(t)]RXX(τ)=E[X(t+τ)X∗(t)]
令 s=t+τs = t + \taus=t+τ,则 t=s−τt = s - \taut=s−τ,代入得:
RXX(τ)=E[X(s)X∗(s−τ)]R_{XX}(\tau) = E[X(s)X^*(s-\tau)]RXX(τ)=E[X(s)X∗(s−τ)]
对于 RXX(−τ)R_{XX}(-\tau)RXX(−τ):
RXX(−τ)=E[X(t−τ)X∗(t)]=E[X(s−τ)X∗(s)]R_{XX}(-\tau) = E[X(t-\tau)X^*(t)] = E[X(s-\tau)X^*(s)]RXX(−τ)=E[X(t−τ)X∗(t)]=E[X(s−τ)X∗(s)]
取复共轭:
RXX∗(−τ)=E[X(s−τ)X∗(s)]∗=E[X∗(s−τ)X(s)]=E[X(s)X∗(s−τ)]=RXX(τ)R_{XX}^*(-\tau) = E[X(s-\tau)X^*(s)]^* = E[X^*(s-\tau)X(s)] = E[X(s)X^*(s-\tau)] = R_{XX}(\tau)RXX∗(−τ)=E[X(s−τ)X∗(s)]∗=E[X∗(s−τ)X(s)]=E[X(s)X∗(s−τ)]=RXX(τ)
因此,RXX(τ)=RXX∗(−τ)R_{XX}(\tau) = R_{XX}^*(-\tau)RXX(τ)=RXX∗(−τ)。
功率谱密度与维纳-辛钦定理
根据维纳-辛钦定理,功率谱密度 SXX(f)S_{XX}(f)SXX(f) 定义为自相关函数的傅里叶变换:
SXX(f)=∫−∞∞RXX(τ)e−j2πfτdτS_{XX}(f) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j2\pi f\tau} d\tauSXX(f)=∫−∞∞RXX(τ)e−j2πfτdτ
定理:对于复WSS过程,其功率谱密度 SXX(f)S_{XX}(f)SXX(f) 是实值非负函数。
证明:利用厄米特对称性,
SXX(f)=∫−∞∞RXX(τ)e−j2πfτdτS_{XX}(f) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j2\pi f\tau} d\tauSXX(f)=∫−∞∞RXX(τ)e−j2πfτdτ
令 u=−τu = -\tauu=−τ,则:
SXX(f)=∫−∞∞RXX(−u)ej2πfudu=∫−∞∞RXX∗(u)ej2πfuduS_{XX}(f) = \int_{-\infty}^{\infty} R_{XX}(-u) e^{j2\pi fu} du = \int_{-\infty}^{\infty} R_{XX}^*(u) e^{j2\pi fu} duSXX(f)=∫−∞∞RXX(−u)ej2πfudu=∫−∞∞RXX∗(u)ej2πfudu
取复共轭:
SXX∗(f)=∫−∞∞RXX(u)e−j2πfudu=SXX(f)S_{XX}^*(f) = \int_{-\infty}^{\infty} R_{XX}(u) e^{-j2\pi fu} du = S_{XX}(f)SXX∗(f)=∫−∞∞RXX(u)e−j2πfudu=SXX(f)
因此 SXX(f)S_{XX}(f)SXX(f) 为实函数。
为证明非负性,考虑任意有限能量信号 h(t)h(t)h(t),定义:
Y=∫−∞∞h∗(t)X(t)dtY = \int_{-\infty}^{\infty} h^*(t)X(t)dtY=∫−∞∞h∗(t)X(t)dt
则 E[∣Y∣2]≥0E[|Y|^2] \geq 0E[∣Y∣2]≥0。经过详细计算可得:
E[∣Y∣2]=∫−∞∞∣H(f)∣2SXX(f)df≥0E[|Y|^2] = \int_{-\infty}^{\infty} |H(f)|^2 S_{XX}(f) df \geq 0E[∣Y∣2]=∫−∞∞∣H(f)∣2SXX(f)df≥0
由于 ∣H(f)∣2|H(f)|^2∣H(f)∣2 可以是任意非负函数,故 SXX(f)≥0S_{XX}(f) \geq 0SXX(f)≥0。
帕塞瓦尔定理的应用
信号的总功率可通过时域或频域计算:
P=RXX(0)=E[∣X(t)∣2]=∫−∞∞SXX(f)dfP = R_{XX}(0) = E[|X(t)|^2] = \int_{-\infty}^{\infty} S_{XX}(f) dfP=RXX(0)=E[∣X(t)∣2]=∫−∞∞SXX(f)df
这一关系的证明基于傅里叶变换的逆变换:
RXX(τ)=∫−∞∞SXX(f)ej2πfτdfR_{XX}(\tau) = \int_{-\infty}^{\infty} S_{XX}(f) e^{j2\pi f\tau} dfRXX(τ)=∫−∞∞SXX(f)ej2πfτdf
令 τ=0\tau = 0τ=0:
RXX(0)=∫−∞∞SXX(f)df=PR_{XX}(0) = \int_{-\infty}^{\infty} S_{XX}(f) df = PRXX(0)=∫−∞∞SXX(f)df=P
复包络表示与解析信号
带通信号的复基带表示
设 s(t)s(t)s(t) 为中心频率为 fcf_cfc 的实带通信号,其频谱 S(f)S(f)S(f) 满足:
S(f)=0,∣f∣∉[fc−W/2,fc+W/2]∪[−fc−W/2,−fc+W/2]S(f) = 0, \quad |f| \notin [f_c - W/2, f_c + W/2] \cup [-f_c - W/2, -f_c + W/2]S(f)=0,∣f∣∈/[fc−W/2,fc+W/2]∪[−fc−W/2,−fc+W/2]
其中 WWW 为信号带宽。定义复包络 s~(t)\tilde{s}(t)s~(t) 使得:
s(t)=Re{s~(t)ej2πfct}s(t) = \text{Re}\{\tilde{s}(t)e^{j2\pi f_c t}\}s(t)=Re{s~(t)ej2πfct}
展开得:
s(t)=12[s~(t)ej2πfct+s~∗(t)e−j2πfct]s(t) = \frac{1}{2}[\tilde{s}(t)e^{j2\pi f_c t} + \tilde{s}^*(t)e^{-j2\pi f_c t}]s(t)=21[s~(t)ej2πfct+s~∗(t)e−j2πfct]
取傅里叶变换:
S(f)=12[S~(f−fc)+S~∗(−(f+fc))]S(f) = \frac{1}{2}[\tilde{S}(f - f_c) + \tilde{S}^*(-(f + f_c))]S(f)=21[S~(f−fc)+S~∗(−(f+fc))]
其中 S~(f)\tilde{S}(f)S~(f) 是 s~(t)\tilde{s}(t)s~(t) 的傅里叶变换。
希尔伯特变换与解析信号
对于实信号 x(t)x(t)x(t),其希尔伯特变换定义为:
x^(t)=1πP.V.∫−∞∞x(τ)t−τdτ\hat{x}(t) = \frac{1}{\pi} \text{P.V.} \int_{-\infty}^{\infty} \frac{x(\tau)}{t-\tau} d\taux^(t)=π1P.V.∫−∞∞t−τx(τ)dτ
其中 P.V. 表示柯西主值。在频域中:
X^(f)=−j⋅sgn(f)⋅X(f)\hat{X}(f) = -j \cdot \text{sgn}(f) \cdot X(f)X^(f)=−j⋅sgn(f)⋅X(f)
其中
sgn(f)={1,f>00,f=0−1,f<0\text{sgn}(f) = \begin{cases}
1, & f > 0 \\
0, & f = 0 \\
-1, & f < 0
\end{cases}sgn(f)=⎩⎨⎧1,0,−1,f>0f=0f<0
解析信号定义为:
xa(t)=x(t)+jx^(t)x_a(t) = x(t) + j\hat{x}(t)xa(t)=x(t)+jx^(t)
其频谱为:
Xa(f)=X(f)+jX^(f)=X(f)[1+sgn(f)]={2X(f),f>0X(f),f=00,f<0X_a(f) = X(f) + j\hat{X}(f) = X(f)[1 + \text{sgn}(f)] = \begin{cases}
2X(f), & f > 0 \\
X(f), & f = 0 \\
0, & f < 0
\end{cases}Xa(f)=X(f)+jX^(f)=X(f)[1+sgn(f)]=⎩⎨⎧2X(f),X(f),0,f>0f=0f<0
复包络与解析信号的关系
对于带通信号 s(t)s(t)s(t),其解析信号为:
sa(t)=s(t)+js^(t)s_a(t) = s(t) + j\hat{s}(t)sa(t)=s(t)+js^(t)
可以证明:
sa(t)=s~(t)ej2πfcts_a(t) = \tilde{s}(t)e^{j2\pi f_c t}sa(t)=s~(t)ej2πfct
因此,复包络可表示为:
s~(t)=sa(t)e−j2πfct=[s(t)+js^(t)]e−j2πfct\tilde{s}(t) = s_a(t)e^{-j2\pi f_c t} = [s(t) + j\hat{s}(t)]e^{-j2\pi f_c t}s~(t)=sa(t)e−j2πfct=[s(t)+js^(t)]e−j2πfct
圆对称复高斯过程
定义与概率密度函数
复随机变量 Z=X+jYZ = X + jYZ=X+jY 服从圆对称复高斯分布,记作 Z∼CN(μ,σ2)Z \sim \mathcal{CN}(\mu, \sigma^2)Z∼CN(μ,σ2),如果其概率密度函数为:
fZ(z)=1πσ2exp(−∣z−μ∣2σ2)f_Z(z) = \frac{1}{\pi\sigma^2} \exp\left(-\frac{|z-\mu|^2}{\sigma^2}\right)fZ(z)=πσ21exp(−σ2∣z−μ∣2)
其中 μ=μX+jμY\mu = \mu_X + j\mu_Yμ=μX+jμY 为复均值,σ2=E[∣Z−μ∣2]\sigma^2 = E[|Z-\mu|^2]σ2=E[∣Z−μ∣2] 为方差。
圆对称性的数学刻画
随机变量 ZZZ 具有圆对称性,当且仅当对任意 θ∈[0,2π)\theta \in [0, 2\pi)θ∈[0,2π),ejθZe^{j\theta}ZejθZ 与 ZZZ 具有相同的分布。这等价于以下条件:
- E[Z2]=E[(X+jY)2]=E[X2−Y2]+2jE[XY]=0E[Z^2] = E[(X + jY)^2] = E[X^2 - Y^2] + 2jE[XY] = 0E[Z2]=E[(X+jY)2]=E[X2−Y2]+2jE[XY]=0
- E[X2]=E[Y2]E[X^2] = E[Y^2]E[X2]=E[Y2] 且 E[XY]=0E[XY] = 0E[XY]=0
证明圆对称性的充要条件:
必要性:若 ZZZ 圆对称,则 ejπ/2Z=jZe^{j\pi/2}Z = jZejπ/2Z=jZ 与 ZZZ 同分布。因此:
E[Z2]=E[(jZ)2]=E[j2Z2]=−E[Z2]E[Z^2] = E[(jZ)^2] = E[j^2Z^2] = -E[Z^2]E[Z2]=E[(jZ)2]=E[j2Z2]=−E[Z2]
故 E[Z2]=0E[Z^2] = 0E[Z2]=0。
充分性:若 E[Z2]=0E[Z^2] = 0E[Z2]=0,考虑特征函数:
ϕZ(t1,t2)=E[exp(j(t1X+t2Y))]\phi_Z(t_1, t_2) = E[\exp(j(t_1X + t_2Y))]ϕZ(t1,t2)=E[exp(j(t1X+t2Y))]
对于圆对称分布,该特征函数应满足:
ϕZ(t1,t2)=ϕZ(t1cosθ−t2sinθ,t1sinθ+t2cosθ)\phi_Z(t_1, t_2) = \phi_Z(t_1\cos\theta - t_2\sin\theta, t_1\sin\theta + t_2\cos\theta)ϕZ(t1,t2)=ϕZ(t1cosθ−t2sinθ,t1sinθ+t2cosθ)
当 Z∼CN(0,σ2)Z \sim \mathcal{CN}(0, \sigma^2)Z∼CN(0,σ2) 时,可验证此条件成立。
二阶统计特性
对于零均值圆对称复高斯过程 {Z(t)}\{Z(t)\}{Z(t)},其完全由自相关函数 RZZ(τ)=E[Z(t+τ)Z∗(t)]R_{ZZ}(\tau) = E[Z(t+\tau)Z^*(t)]RZZ(τ)=E[Z(t+τ)Z∗(t)] 刻画。协方差矩阵为:
CZ=E[zzH]\mathbf{C}_Z = E[\mathbf{z}\mathbf{z}^H]CZ=E[zzH]
其中 z=[Z(t1),Z(t2),…,Z(tn)]T\mathbf{z} = [Z(t_1), Z(t_2), \ldots, Z(t_n)]^Tz=[Z(t1),Z(t2),…,Z(tn)]T,zH\mathbf{z}^HzH 表示共轭转置。
伪协方差矩阵:
PZ=E[zzT]=0\mathbf{P}_Z = E[\mathbf{z}\mathbf{z}^T] = \mathbf{0}PZ=E[zzT]=0
这正是圆对称性的体现。
现代通信系统中的应用
OFDM系统的数学模型
在OFDM系统中,NNN 个数据符号 {Xk}k=0N−1\{X_k\}_{k=0}^{N-1}{Xk}k=0N−1 通过IDFT调制到正交子载波上:
x(n)=1N∑k=0N−1Xkej2πkn/N,n=0,1,…,N−1x(n) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X_k e^{j2\pi kn/N}, \quad n = 0, 1, \ldots, N-1x(n)=N1k=0∑N−1Xkej2πkn/N,n=0,1,…,N−1
加入长度为 LLL 的循环前缀后,发送信号为:
s(n)={x(n+N),−L≤n<0x(n),0≤n<Ns(n) = \begin{cases}
x(n + N), & -L \leq n < 0 \\
x(n), & 0 \leq n < N
\end{cases}s(n)={x(n+N),x(n),−L≤n<00≤n<N
经过信道 h(n)h(n)h(n) 和加性高斯白噪声 w(n)w(n)w(n) 后,接收信号为:
r(n)=∑l=0L−1h(l)s(n−l)+w(n)r(n) = \sum_{l=0}^{L-1} h(l)s(n-l) + w(n)r(n)=l=0∑L−1h(l)s(n−l)+w(n)
去除循环前缀并进行DFT:
Yk=1N∑n=0N−1r(n)e−j2πkn/NY_k = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} r(n) e^{-j2\pi kn/N}Yk=N1n=0∑N−1r(n)e−j2πkn/N
可以证明,当循环前缀长度大于信道时延扩展时:
Yk=HkXk+WkY_k = H_k X_k + W_kYk=HkXk+Wk
其中 Hk=∑l=0L−1h(l)e−j2πkl/NH_k = \sum_{l=0}^{L-1} h(l) e^{-j2\pi kl/N}Hk=∑l=0L−1h(l)e−j2πkl/N 是信道频率响应,WkW_kWk 是频域噪声。
信道的WSS建模
在时变信道中,冲激响应 h(t,τ)h(t, \tau)h(t,τ) 表示在时刻 ttt 对时延为 τ\tauτ 的路径增益。若信道满足广义平稳非相关散射(WSSUS)条件:
- 不同时延的路径增益不相关:E[h(t,τ1)h∗(t,τ2)]=0E[h(t, \tau_1)h^*(t, \tau_2)] = 0E[h(t,τ1)h∗(t,τ2)]=0,当 τ1≠τ2\tau_1 \neq \tau_2τ1=τ2
- 自相关函数仅依赖于时间差:E[h(t+Δt,τ)h∗(t,τ)]=Rh(Δt,τ)E[h(t+\Delta t, \tau)h^*(t, \tau)] = R_h(\Delta t, \tau)E[h(t+Δt,τ)h∗(t,τ)]=Rh(Δt,τ)
定义多普勒功率谱密度:
Sh(ν,τ)=∫−∞∞Rh(Δt,τ)e−j2πνΔtd(Δt)S_h(\nu, \tau) = \int_{-\infty}^{\infty} R_h(\Delta t, \tau) e^{-j2\pi\nu\Delta t} d(\Delta t)Sh(ν,τ)=∫−∞∞Rh(Δt,τ)e−j2πνΔtd(Δt)
时延功率谱:
Ph(τ)=Rh(0,τ)=E[∣h(t,τ)∣2]P_h(\tau) = R_h(0, \tau) = E[|h(t, \tau)|^2]Ph(τ)=Rh(0,τ)=E[∣h(t,τ)∣2]
相干带宽定义为:
Bc=12πτrmsB_c = \frac{1}{2\pi\tau_{rms}}Bc=2πτrms1
其中 τrms=∫τ2Ph(τ)dτ/∫Ph(τ)dτ\tau_{rms} = \sqrt{\int \tau^2 P_h(\tau) d\tau / \int P_h(\tau) d\tau}τrms=∫τ2Ph(τ)dτ/∫Ph(τ)dτ 是均方根时延扩展。
维纳滤波与最优信号处理
维纳-霍夫方程的推导
设观测信号为:
y(t)=s(t)+n(t)y(t) = s(t) + n(t)y(t)=s(t)+n(t)
其中 s(t)s(t)s(t) 是期望信号,n(t)n(t)n(t) 是噪声。目标是设计滤波器 h(t)h(t)h(t) 使得估计误差:
e(t)=s(t)−s^(t)=s(t)−∫−∞∞h(τ)y(t−τ)dτe(t) = s(t) - \hat{s}(t) = s(t) - \int_{-\infty}^{\infty} h(\tau)y(t-\tau)d\taue(t)=s(t)−s^(t)=s(t)−∫−∞∞h(τ)y(t−τ)dτ
的均方值最小。根据正交性原理,最优滤波器满足:
E[e(t)y∗(t−u)]=0,∀uE[e(t)y^*(t-u)] = 0, \quad \forall uE[e(t)y∗(t−u)]=0,∀u
展开得到维纳-霍夫方程:
Rsy(u)=∫−∞∞h(τ)Ryy(u−τ)dτR_{sy}(u) = \int_{-\infty}^{\infty} h(\tau)R_{yy}(u-\tau)d\tauRsy(u)=∫−∞∞h(τ)Ryy(u−τ)dτ
在频域中:
Ssy(f)=H(f)Syy(f)S_{sy}(f) = H(f)S_{yy}(f)Ssy(f)=H(f)Syy(f)
因此,最优滤波器的频率响应为:
Hopt(f)=Ssy(f)Syy(f)H_{opt}(f) = \frac{S_{sy}(f)}{S_{yy}(f)}Hopt(f)=Syy(f)Ssy(f)
最小均方误差
将最优滤波器代入误差表达式,可得最小均方误差:
MMSE=E[∣e(t)∣2]=Rss(0)−∫−∞∞Hopt(f)Sys(f)df\text{MMSE} = E[|e(t)|^2] = R_{ss}(0) - \int_{-\infty}^{\infty} H_{opt}(f)S_{ys}(f)dfMMSE=E[∣e(t)∣2]=Rss(0)−∫−∞∞Hopt(f)Sys(f)df
利用 Sys(f)=Ssy∗(f)S_{ys}(f) = S_{sy}^*(f)Sys(f)=Ssy∗(f) 和 Hopt(f)=Ssy(f)/Syy(f)H_{opt}(f) = S_{sy}(f)/S_{yy}(f)Hopt(f)=Ssy(f)/Syy(f):
MMSE=Rss(0)−∫−∞∞∣Ssy(f)∣2Syy(f)df\text{MMSE} = R_{ss}(0) - \int_{-\infty}^{\infty} \frac{|S_{sy}(f)|^2}{S_{yy}(f)}dfMMSE=Rss(0)−∫−∞∞Syy(f)∣Ssy(f)∣2df
当信号与噪声不相关时,Syy(f)=Sss(f)+Snn(f)S_{yy}(f) = S_{ss}(f) + S_{nn}(f)Syy(f)=Sss(f)+Snn(f),Ssy(f)=Sss(f)S_{sy}(f) = S_{ss}(f)Ssy(f)=Sss(f),因此:
Hopt(f)=Sss(f)Sss(f)+Snn(f)H_{opt}(f) = \frac{S_{ss}(f)}{S_{ss}(f) + S_{nn}(f)}Hopt(f)=Sss(f)+Snn(f)Sss(f)
这就是著名的维纳滤波器表达式,它在信噪比高的频段接近1,在信噪比低的频段接近0,实现了最优的噪声抑制。