【贪心算法】605.种花问题

该博客探讨了一种利用贪心算法解决种花问题的方法。在给定的flowerbed数组中,如果三个连续位置都是0,则可以在中间位置种植花朵,同时处理边界条件。代码示例展示了如何在C++中实现这一逻辑,检查每个位置并确保满足种花条件。通过遍历数组并更新计数,判断是否能种植指定数量的花朵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【贪心算法】605.种花问题

题目

在这里插入图片描述

解析

只要判断连续三个位置都是0 就可以在中间位置中一朵花,同时需要考虑边界问题:最后一个位置与第一个位置。

代码

class Solution {
public:
    bool canPlaceFlowers(vector<int>& flowerbed, int n) {
        
        // 只要判断连续三个位置都是0 就可以在中间位置中一朵花

        int count = 0;

        for(int i = 0 ; i < flowerbed.size(); i++)
        {
            // 考虑边界问题,比如 0 0 1 那么只能在第一个位置种上一朵花   1 0 0 最后一个位置种上一朵花
            // 也就是这里要考虑最后一个位置与第一个位置
            if(flowerbed[i] == 0 && (i == 0 || flowerbed[i - 1] == 0) &&(i == flowerbed.size() - 1 ||  flowerbed[i + 1] == 0))
            {
                flowerbed[i] = 1;
                count++;// 种上一朵花
            }
        }

        return count >= n;

    }
};
在Python中,贪心算法是一种通过每一步局部最优选择来达到全局最优解的问题求解策略。对于种花问题,我们可以假设我们有不同种类的花,每种花需要一定的土壤、阳光和水分才能生长,并且每种花的价值也不同。贪心算法在这种问题中可能会假设每次选择当前价值最高的花,直到资源(如土壤、阳光和水分)耗尽。 下面是一个简单的贪心算法示例,这里假设我们有一个函数`get_value(plant, resources)`,它返回植物在给定资源下的价值,以及一个函数`check_resources(resource_needed, available_resources)`检查是否满足种植需求: ```python def greedy_flower_planting(profit_per_flower, soil_capacity, sunlight_capacity, water_capacity): flowers = sorted(profit_per_flower.items(), key=lambda x: x[1], reverse=True) # 按价值降序排序 total_profit = 0 soil_left = soil_capacity sunlight_left = sunlight_capacity water_left = water_capacity for flower, profit in flowers: resource_needed = (flower.soil, flower.sunlight, flower.water) if check_resources(resource_needed, [soil_left, sunlight_left, water_left]): total_profit += profit soil_left -= flower.soil sunlight_left -= flower.sunlight water_left -= flower.water else: break # 如果资源不够,就不再种植此花 return total_profit # 示例数据结构,每个flower字典包含值(profit)、土壤需求、阳光需求和水分需求 flowers = [ {"name": "A", "profit": 10, "soil": 5, "sunlight": 4, "water": 3}, {"name": "B", "profit": 8, "soil": 7, "sunlight": 3, "water": 2}, {"name": "C", "profit": 6, "soil": 4, "sunlight": 5, "water": 1} ] # 调用算法 total_profit = greedy_flower_planting(profit_per_flower={flower["name"]: flower["profit"] for flower in flowers}, soil_capacity=100, sunlight_capacity=100, water_capacity=100) print(f"最大利润:{total_profit}")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少写代码少看论文多多睡觉

求打赏,求关注,求点赞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值