RuntimeError: CUDA out of memory. Tried to allocate ... MiB & Pytorch模型测试时显存一直上升导致爆显存

在测试大型数据集时,由于模型推理后显存逐渐增加,导致CUDAoutofmemory错误。问题在于测试代码未清除梯度,每轮推理都会累积新的梯度。解决方案是在测试时使用`torch.no_grad()`上下文管理器,阻止模型记录梯度,防止显存溢出。训练时每个batch结束后需清理梯度以避免相同问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

由于测试集很大,出现了CUDA out of memory错误。

在写代码的时候发现进行训练的时候大概显存只占用了2GB左右,而且训练过程中显存占用量也基本上是不变的。而在测试的时候,发现显存在每个batch数据推理后逐渐增加, 直至最后导致爆显存。

尝试过修改batchsize大小,调为1后仍会出现该问题。我的显存是12G,大概问题就出在了代码上。

测试的代码:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值