jupyter-lab与实验室服务器远程链接

导师整了一个A800,我要是想用这个就要自己从0开始配置,既然给我用,就老实实的配置,别多话。
anaconda、nvidia(cuda(cuda-toolkit))等一大堆安装包,在线安装全是坑,我个人都是离线安装的。
(实验室一个哥们的实验配置要求好像是cuda12.0,我安装的是cuda11.8,我没考虑那么多,那个哥们自己整吧,啊哈哈哈)

有了jupyterlab,自己电脑的终端关闭以及断网都不影响服务器正常运行。下面开始进入正题

ipython3
In [1]: from jupyter_server.auth import passwd    
#from notebook.auth import passwd   这是旧版本的,新版本报错
In [2]: passwd()
Enter password:
Verify password:

输出

Out[2]: ‘sha1:f704b702aea2:01e2bd991f9c7208ba177b46f4d10b6907810927‘
exit()     #然后退出ipython,在terminal中依次输入以下命令:
jupyter lab --generate-config
sudo vim /root/.jupyter/jupyter_notebook_config.py
# 将ip设置为*,意味允许任何IP访问
c.NotebookApp.ip = ‘*‘
# 这里的密码就是上边我们生成的那一串
c.NotebookApp.password = ‘sha1:f704b702aea2:01e2bd991f9c7208ba177b46f4d10b6907810927‘
# 服务器上并没有浏览器可以供Jupyter打开
c.NotebookApp.open_browser = False
# 监听端口设置为8888或其他自己喜欢的端口
c.NotebookApp.port = 8888
# 允许远程访问
c.NotebookApp.allow_remote_access = True
:wq   #保存并退出

#这段代码即便是终端、断网也能让服务器正常运行

nohup jupyter-lab --no-browser --ip "66.66.66.666" --port 4567 --ServerApp.token="1111111111你自己的111111111111" > jupyterlab.log 2>&1 &
tail -f jupyterlab.log

#随看随查

jupyter server list

刚才建立了两个

http://66.66.66.666:4567/?token=argon2:=19=10240,t=10,p=8+y5Q/W08PPwc3lRE0vWc9xmXCrk :: /home/rjxy01
http://66.66.66.666:4568/?token=argon2:=19=10240,t=10,p=8+y5Q/W08PPwc3lRE0vWc9xmXCrk :: /home/rjxy01

一个我用,一个同门用,刚刚好

本次配置借鉴:https://blog.csdn.net/sunmingyang1987/article/details/105838926
https://blog.csdn.net/qq_36603177/article/details/132117549

请给原博主点一个大大的赞

### 部署和配置 Jupyter Notebook 在实验室服务器上部署和配置 Jupyter Notebook 是一项常见的需求,尤其是在需要通过远程访问进行数据分析或机器学习实验时。以下是详细的说明: #### 1. 环境准备 确保服务器的操作系统为 Linux(如 Ubuntu),并且已安装 Anaconda 或 Miniconda。如果尚未安装 Anaconda,则可以通过以下命令完成安装[^2]: ```bash wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh bash Anaconda3-2023.07-1-Linux-x86_64.sh ``` 执行上述脚本后,按照提示完成安装,并重启终端使更改生效。 #### 2. 创建虚拟环境 建议在独立的 Python 虚拟环境中运行 Jupyter Notebook,以避免依赖冲突。创建虚拟环境的方法如下: ```bash conda create -n myenv python=3.9 conda activate myenv ``` 其中 `myenv` 可替换为你希望使用的环境名称[^3]。 #### 3. 安装 Jupyter Notebook/Lab 激活虚拟环境后,安装 Jupyter Notebook 或 Lab: ```bash pip install jupyterlab ``` 或者仅需 Notebook 功能时: ```bash pip install notebook ``` #### 4. 配置 Jupyter Notebook 生成默认配置文件以便自定义设置: ```bash jupyter notebook --generate-config ``` 此命令会在用户目录下生成一个名为 `.jupyter/jupyter_notebook_config.py` 的文件。编辑该文件以启用密码保护或其他安全措施。例如,添加以下内容来指定绑定 IP 和端口: ```python c.NotebookApp.ip = '0.0.0.0' c.NotebookApp.port = 8888 c.NotebookApp.open_browser = False ``` #### 5. 设置密码 为了增强安全性,可以为 Jupyter Notebook 添加密码。运行以下命令生成哈希值: ```bash from notebook.auth import passwd passwd() ``` 将返回的哈希值加入到配置文件中的 `NotebookApp.password` 字段: ```python c.NotebookApp.password = u'sha1:<hash_value>' ``` #### 6. 启动服务 启动 Jupyter Notebook 并使其监听外部请求: ```bash jupyter notebook --no-browser ``` 此时可以在本地浏览器中输入 `<server_ip>:<port>` 访问 Notebook 接口。 #### 7. 远程访问优化 对于实验室服务器可能存在的防火墙限制,推荐使用 SSH 隧道实现更稳定的连接。具体方法是在客户端执行以下命令: ```bash ssh -L 8888:localhost:8888 username@server_address ``` 之后打开浏览器并导航至 `http://localhost:8888` 即可正常访问[^4]。 --- ### 总结 以上流程涵盖了从基础环境搭建到高级功能配置的所有必要环节。遵循这些步骤能够有效提升工作效率,同时保障数据传输的安全性。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值