- 博客(21)
- 资源 (3)
- 收藏
- 关注
原创 机器学习中的优化方法:从局部探索到全局约束
在优化问题中,我们常常需要在一个极其复杂的目标函数中找到最优解。方法主要聚焦于当前搜索区域内的最优点,尽管这种方法可能陷入局部最优,但在很多实际问题中,局部最优解也能带来较好的性能。相对于非凸问题,x∈Rnminfxsubject tox∈C其中,fx是凸函数,C为凸集。由于凸函数的任意局部最优解均为全局最优解,因此凸优化在许多机器学习任务(如支持向量机、LASSO回归)中具有重要应用。
2025-03-02 10:06:13
1830
原创 线性代数在机器学习中的理论与实践
本文从向量空间、特殊矩阵、范数与乘法等基本概念出发,系统探讨了矩阵求逆定理、行列式引理、EVD、SVD、正定性、二次型、幂方法、消元法、伪逆、截断 SVD、其他矩阵分解、解线性方程组以及矩阵微积分在机器学习中的理论应用。
2025-03-02 09:57:10
895
原创 熵、KL散度与互信息的深度解读
通过上面的讨论,我们从大白话和严谨的数学公式两个角度,详细地探讨了信息论在机器学习中的应用。无论是熵、交叉熵、联合熵、条件熵,还是KL散度、互信息以及由此衍生出的NMI、MIC,都为我们提供了理解数据和模型的强大工具。同时,DPI不等式、充分统计量与Fano不等式进一步揭示了信息处理过程中的基本限制和规律。
2025-03-01 13:28:22
1045
原创 重新审视机器学习中的决策论
经过前面层层递进的讨论,我们从频率派决策、贝叶斯风险、最大风险,到一致估计量与可采估计量,再到经验风险最小化、结构风险以及统计学习理论中的泛化误差上界与VC维度,最后回顾了频率主义假设检验与似然比检验、I型与II型错误以及p值的相关概念。
2025-03-01 13:24:08
685
原创 从贝叶斯决策到奥卡姆剃刀的数学与实践探索
贝叶斯决策理论可以看作是利用概率论来进行决策的一个系统方法。核心思想是利用贝叶斯公式,将先验知识和数据结合,从而推导出后验概率,然后根据后验概率来做出决策。PC∣xPx∣CPCPxPC∣xPxPx∣CPC其中,PC∣xP(C|x)PC∣x表示在给定观测数据xxx后,类别CCC的概率;Px∣CP(x|C)Px∣C是似然函数,表示在类别CCC下观测到xxx的可能性;PCP(C)PC是先验概率,而Px。
2025-03-01 13:18:36
1909
原创 通过统计学视角解读机器学习:从贝叶斯到正则化
通过贝叶斯方法、正则化、最大后验估计、偏差方差权衡等一系列理论工具,机器学习变得更加精确和可靠。这些统计学方法不仅帮助我们更好地理解数据,还能在实际应用中提升模型的表现。
2025-02-28 23:54:30
902
原创 从统计学视角看机器学习的训练与推理
通过上面的讨论,我们可以看到,统计学不仅为机器学习中的训练和推理提供了理论基础,更在参数估计上展现出极大的魅力。无论是最大似然估计的严谨证明,还是经验风险最小化的广义框架,都为我们理解机器学习模型的本质提供了强有力的支持。同时,矩估计、在线递归估计和指数加权移动平均等方法,也展示了数据流时代实时更新模型参数的可能性。
2025-02-28 13:57:26
755
原创 认知动力学视角下的生命优化系统:多模态机器学习框架的哲学重构
dSdiSdeS其中diS为内部熵增,deS为外部熵减。根据香农信息论HX−i1∑npxilogpxi≤C通过构建自适应信息滤波器,系统实现外界扰动∇Hext与内部耗散∇Hint的动态平衡。研究表明,当批评声量Icritique∂t∂H∇⋅D∇HkIcritique2其中扩散系数D。
2025-02-28 11:58:45
1750
原创 从指数族到混合模型的全新视角
在 PGMs 中,每个节点代表一个随机变量,而边表示变量之间的依赖关系。通过这种图形化表达,我们可以清楚地看到哪些变量是相互独立的,哪些变量之间存在联系。例如,在混合模型中,我们可以用一个隐藏变量来表示数据来源于哪个分布,而观测数据则由该隐藏变量决定。
2025-02-26 22:39:31
727
原创 从数学视角看多变量模型
对于nnn个随机变量X1X2XnX1X2Xn,协方差矩阵Σ\SigmaΣΣijCovXiXjΣijCovXiXj对称性ΣijΣjiΣijΣji半正定性:对任意非零向量aaa,有aTΣa≥0aTΣa≥0对于kkk维随机变量XX1X2XkTXX1X2XkTfx12πk2∣Σ∣12exp−12。
2025-02-26 13:59:46
725
原创 巉岩与清风:论生命张力的辩证美学
在控制理论中,李雅普诺夫稳定性定理告诉我们:当存在标量函数Vx满足V˙x∂x∂Vfx≤0系统将在平衡点保持稳定。Vmentalα∥信念∥2βlog1经验其中调节因子αβαβdtdxAxBupressure通过特征值分解可知,保持矩阵A的负定性是稳定关键。
2025-02-26 09:48:38
823
原创 随机变量变换在单变量模型中的神奇应用
离散与连续变换公式:虽然形式上有区别,但本质都是对“映射后概率重分布”的描述。可逆变换的重要性:只有保证映射函数为双射,才能准确地利用公式求得新变量的分布。线性变换及其矩:简单的线性变换不仅在理论上易于处理,更在数据预处理、归一化等实践中大显身手。卷积定理与中心极限定理:这两大定理揭示了独立随机变量叠加后的神奇性质,展示了“混沌中见规律”的数学美感。蒙特卡洛方法:作为一种数值近似工具,蒙特卡洛方法为我们提供了处理高维、复杂积分问题的有效途径。
2025-02-25 23:55:06
625
原创 从概率分布到逻辑回归的全景探秘
σz11e−zσz1e−z1这个函数将任意实数zzz映射到01(0,1)01之间,非常适合用来表示概率。直观地说,当zzz越大时,σz\sigma(z)σz趋近于 1;当zzz越小时,σz\sigma(z)σz趋近于 0。假设我们预测一个人是否会购买某件商品。我们可以将多种因素(比如年龄、收入、兴趣等)线性组合成一个zzz,然后用σz\sigma(z)σz得到购买的概率。当z0z=0z0时,σ01110.5。
2025-02-25 23:45:21
608
原创 从随机性到智慧:机器学习视角下的概率与不确定性全解析
简单来说,随机变量XXX就是一种将随机事件映射为实数的函数。比如,我们可以定义XXX为“今天温度”,这个变量可以取到各种可能的温度值。数学上,我们将事件空间Ω\OmegaΩ中的每个事件ω\omegaω映射到一个实数XωX(\omega)Xω。通过上述内容,我们从最基本的概率概念出发,逐步深入探讨了随机变量的分布、统计量、联合与条件分布,直至贝叶斯规则在机器学习中的应用。从单变量模型到复杂的多变量系统,概率论为我们提供了一把钥匙,帮助我们解锁数据背后蕴藏的规律与不确定性。
2025-02-25 22:22:37
871
原创 机器学习数据处理的全新视角
数据是机器学习的基石,不同领域有不同的数据集。本文从数据集的种类入手,详细探讨了离散数据与文本数据的预处理方法,解析了缺失数据的不同机制,并深入剖析了 Seq2Seq 模型、损失函数和梯度下降法等关键数学公式。用大白话和公式层层拆解,我们看到了数学如何成为机器学习理论的坚实支柱。总结要点:数据预处理是模型成功的基石,合理的独热编码、特征交叉以及文本处理方法对后续模型效果至关重要。数学公式为我们提供了优化和改进模型的理论保障,交叉熵、Softmax、梯度下降等公式都是训练过程中不可或缺的工具。
2025-02-24 22:29:29
597
原创 从监督到强化:全新视角下的机器学习革命
在 MDP 框架下,智能体的目标是找到一个最优策略π∗\pi^*π∗,使得累积奖励最大。策略π\piππa∣sPa∣sπa∣sPa∣s价值函数则衡量了在状态sss下,按照策略π\piπ所能获得的累积奖励期望。
2025-02-24 22:22:19
807
原创 从概率视角解读非监督学习:一场因子分析与自监督学习的奇幻之旅
非监督学习是一种无需预先标记数据的方法,其目标是自动从数据中发现结构、规律和特征。常见的非监督学习方法包括聚类、降维和密度估计等。与监督学习不同,它不依赖于标签信息,而是依靠数据本身的内在分布进行建模。例如,在图像处理领域,非监督学习可以自动将相似的图像归类;在文本分析中,可以发现文本中隐藏的主题。简单来说,非监督学习就像一个“侦探”,无需告诉他案件的关键线索,只需凭借观察和推理,从纷繁复杂的信息中发现隐藏的真相。
2025-02-24 22:05:19
1020
原创 打破界限:从过拟合到泛化——机器学习理论的全新视角探秘
简单来说,过拟合(Overfitting)就是模型在训练数据上表现得太好,但在面对未见过的新数据时却表现不佳。这就像你背了一本书的所有细节,却忽略了书本整体的逻辑结构,当老师出题考查综合理解时,你却答不上来。举个例子,如果你训练了一个识别猫狗的模型,但这个模型仅仅记住了训练集中猫的背景颜色、狗的特定姿势,那么当遇到背景、姿势不同的猫狗时,就会失效。这种情况就叫做过拟合。泛化(Generalization)是指模型在面对新数据时能够保持较好性能的能力。
2025-02-24 12:39:44
641
原创 以概率视角重新审视机器学习:从经验风险到深度神经网络的数学解构
机器学习的本质在于利用经验来改进任务的表现。简单来说,我们希望机器能够从以往的数据中学习,并在未来遇到新问题时做出更好的决策。在本文中,我们从机器学习的基本定义出发,阐述了任务TTT、经验EEE与概率分布PPP的核心思想;通过对监督学习中分类与回归问题的详细讲解,我们展示了如何利用经验风险最小化 (ERM) 和最大似然估计 (MLE) 来建立和优化模型;同时,我们通过大量公式和大白话解释,带你逐步理解了从简单的线性回归、多项式回归到深度神经网络的数学演进过程。核心结论概率视角的重要性。
2025-02-23 23:55:27
568
原创 Markdown 语法大全
在 Markdown 中,你可以使用来定义标题,的数量决定了标题的级别。从到######分别对应 HTML 中的<h1>到<h6>。markdown复制编辑。
2025-02-18 23:54:55
2785
原创 整体科研流程总结
撰写论文初稿后,多次修改和完善,从逻辑、语言、数据等多方面进行提升。借助同行反馈或导师指导,进一步梳理和明确创新点及研究贡献。总结研究过程中遇到的问题和不足,为下一步工作积累经验。保持对领域最新进展的关注,不断更新和扩展自己的研究视野。
2025-02-18 23:27:30
448
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人