Normalization
举个例子:x1是克,x2是吨。量纲不同导致变化率不同 。这时候我们就像要消除量纲的影响Normalization。
标准化哦。让你的梯度下降收敛得更快
对了,z还要再次进行Normalization
因为均值和方差需要考虑整个样本,同时为了样本数不是太大,我们一般只考虑一整个batch进行Normalization,就是Batch Normalization
batch比较大会很好,这样可以用样本估计总体
为了增加灵活性,还会加上β γ,使其均值方差不是0/1。
不过刚开始的时候γ设为1,β设为0 .动态调整
在实际应用中,test数据都是动态来的,所以我们不可能等所有的数据到了再进行Normalization吧 但是我们的μ和σ是根据batch来的,那怎么办呢????
p是人工调的