李宏毅2021机器学习笔记(十二)

Normalization

举个例子:x1是克,x2是吨。量纲不同导致变化率不同 。这时候我们就像要消除量纲的影响Normalization。

标准化哦。让你的梯度下降收敛得更快 

 

对了,z还要再次进行Normalization

 

因为均值和方差需要考虑整个样本,同时为了样本数不是太大,我们一般只考虑一整个batch进行Normalization,就是Batch Normalization

batch比较大会很好,这样可以用样本估计总体

为了增加灵活性,还会加上β γ,使其均值方差不是0/1。

不过刚开始的时候γ设为1,β设为0 .动态调整

在实际应用中,test数据都是动态来的,所以我们不可能等所有的数据到了再进行Normalization吧 但是我们的μ和σ是根据batch来的,那怎么办呢???? 

p是人工调的 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值