机器学习-线性回归

线性回归

单变量线性回归概念

模型

假设自变量x,参数w,b可以得到一个模型,单变量线性回归模型类似一个一次函数。其中w称为权重,b称为偏移值。
fw,b(x)=wx+b f_{w,b}(x) = wx + b fw,b(x)=wx+b
其中,在机器学习里经常利用矩阵运算来进行快速的处理数据。在单变量线性回归的模型中,可以将参数看成一个向量,变量中再带一个一组成一个向量,进行运算。(其中一组向量需要转置)
hθ(x)=[1x][θ0θ1] h_\theta(x) = \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} hθ(x)=[1x][θ0θ1]

代价函数

根据计算得到的计算值和实际值,可以根据代价函数(Cost Function)计算出代价J(w, b)。这里的二分之一是人为添加的,为了让后面梯度下降的计算更加简洁而修饰的常数。
J(θ0,θ1)=12m∑i=1m(y^i−yi)2=12m∑i=1m(hθ(x)−yi)2 J(\theta_0, \theta_1) = \frac {1} {2m} \sum _{i=1} ^m (\hat y_i - y_i) ^2 = \frac {1} {2m} \sum _{i=1} ^m (h_\theta(x) - y_i)^2 J(θ0,θ1)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值