- 博客(1119)
- 资源 (197)
- 问答 (1)
- 收藏
- 关注

原创 【Traffic】奇怪的交通预测:相关文章 | 车辆轨迹预测;城市网络拥堵预测;多任务学习模型:短期流量预测;使用TransD算法嵌入位置的预测;变道意图预测;时间窗口分割算法;到达时间预测;机场容量
交通预测研究综述摘要 本文梳理了2023-2024年交通预测领域的6篇代表性研究。研究主要聚焦于Transformer模型在交通预测中的应用,涉及轨迹预测、拥堵预测和流量预测等多个方向。其中,《低检测率车辆轨迹串联时空预测与图像确认联合模型》提出结合Transformer和图像验证的创新方法,解决低检测率下的轨迹重建问题。《基于双Transformer的混合交通环境下变道意向和轨迹预测》通过意图预测与轨迹预测的协同建模,显著提升了预测准确率。其他研究则针对多模态交通数据整合、时空特征提取等挑战,提出了图神经
2025-06-01 06:38:28
5

原创 【深度学习&交通流量预测】metr-la.h5,pems-bay.h5数据集,通过Python查看数据集 AttributeError: ‘Group‘ object has no attribute
metr-la.h5 数据集是一个在深度学习交通流量预测领域常用的数据集之一,其中包含有关洛杉矶地区交通流量的信息。具体来说,该数据集通常包含了道路上的车辆速度、车辆密度、车辆流量等时间序列数据。这些数据可以用于训练和测试交通流量预测模型,帮助交通管理部门更好地了解和预测交通状况。文件名中的 .h5 扩展名表示该数据集采用了 HDF5 (Hierarchical Data Format 5) 格式进行存储。HDF5 是一种用于存储和组织大量数据的文件格式,特别适合用于存储科学数据和大型数据集。使用 HDF5
2025-05-31 10:15:07
195

原创 【交通 Traffic & Transformer】同一篇文章,内容排版稍有不同 | 交通预测模型中,Transformer相比传统GCN模型有何优势?
Transformer相比传统GCN模型在交通预测中具有三大核心优势:1动态空间依赖建模:通过自注意力机制自动学习节点间的动态关系,摆脱了GCN依赖预定义静态邻接矩阵的局限,能更准确反映交通流的实际时空相关性。2长程依赖捕捉能力:多头注意力机制可同时建模局部和全局依赖关系,解决了GCN因消息传递机制导致的远距离节点信息衰减问题。3层次化特征提取:通过堆叠Transformer层实现特征的多层级抽象(如架构图中的全局编码器和局部解码器协同),而GCN通常只能进行单层空间聚合。实验证明该模型在PeMS等基准
2025-05-30 19:48:33
86

原创 【Traffic Transformer】将 Transformer 应用于 交通预测领域中 | 动态和分层交通时空特征 | 时空模型比纯时间模型的性能要好得多 | 定义不好的相邻矩阵会损害模型
本文提出了一种名为Traffic Transformer的新模型,用于学习动态和分层的交通时空特征。Traffic Transformer受到自然语言处理(NLP)中Transformer的启发,通过多头注意力机制动态地提取和学习交通网络中的空间特征。此外,Traffic Transformer还能够提取分层的空间特征,通过分层注意力机制将全局和局部特征融合。在实验结果中,Traffic Transformer在多个公共交通网络数据集上表现出了优越的性能,证明了其有效性和可靠性。
2025-05-29 07:06:37
32

原创 交通-3:traffic flow forecasting | 通过交通拥堵指数来反映节点的运行状态 | 自适应图卷积网络 | 交叉融合策略 | 车联网 | 交通流量预测,阅读文章合集(3
本文综述了近年来基于图神经网络的交通流预测研究进展。2024年研究提出基于交通流矩阵的TFM-GCAM模型,通过设计交通拥堵指数和矩阵表示节点关系;GT-LSTM则采用非内嵌式方法整合时空特征。2023年研究聚焦动态时空关系建模,如AGFCRN的自适应图融合网络、ADCT-Net的双图交叉融合Transformer框架。综述文章总结了GNN在交通预测中的优势、开源资源和发展趋势。最新研究还探索了绿色车联网中的深度协作智能预测模型。这些工作共同推进了交通流时空特征提取和预测精度的提升。
2025-05-28 09:38:18
54

原创 交通-2:Traffic Forecasting | 考虑交通帧的时空异质性 | 通过提取动态邻接矩阵来描述动态时空相关性 | 交通流预测,阅读文章合集(2
本文综述了多篇关于交通流量预测的研究,重点探讨了如何利用深度学习技术,特别是图神经网络(GNN)和循环神经网络(RNN),来捕捉交通数据的时空相关性。研究普遍指出,交通流量预测面临的主要挑战包括多时间相关性、复杂空间相关性和高度异质性。为解决这些问题,各研究提出了不同的模型架构。例如,ST-3DDMCRN 模型通过三维 Densenet 和多尺度 ConvLSTM-Resnet 网络捕捉局部和远距离的时空信息;MGCN-WOALSTM 模型结合多通道图卷积网络和鲸鱼优化算法,提升了预测精度;STAGCN 模
2025-05-27 07:16:55
62

原创 交通-1:traffic flow forecasting | 基于异构图卷积网络的交通流预测 | 利用异构时空图卷积网络预测电动汽车充电需求 | 交通流量预测,阅读文章合集(1)
近年来,基于图卷积网络(GCN)的交通流预测研究取得了显著进展,尤其是在异构图的应用方面。2022年至2024年间,相关研究数量有所减少,但仍涌现出多个创新模型。2024年的研究包括EVHF-GCN模型,通过异构特征融合实现紧急车辆优先调度;时空傅里叶增强型异构图学习模型(FEHGCARN),结合傅里叶变换捕捉时空依赖关系;以及基于多层图卷积网络的异构模块化流量预测模型(MGSTCN),通过模块化流量图描述时空相关性。2023年的研究则提出了多权图3D卷积网络(MWG3D)和时空异构同步图卷积网络(STHS
2025-05-25 13:09:10
47

原创 【时空图神经网络 & 交通】相关模型7:Graph WaveNet | GCN:自适应邻接矩阵 + 扩散卷积 | TCN:Gate Mechanism门控机制 + 扩张因果卷积
本文提出了一种新型的图神经网络架构,用于时空图建模,旨在解决现有方法在捕捉空间依赖性和时间趋势方面的不足。传统方法通常依赖于固定的图结构,无法反映真实的依赖关系,且在处理长时间序列时表现不佳。Graph WaveNet通过引入自适应依赖矩阵和节点嵌入,能够精确捕捉隐藏的空间依赖关系,并利用扩张卷积(膨胀因果卷积)处理长距离时间序列,避免了RNN的梯度问题。该模型将空间和时间依赖性的捕捉集成到一个统一的框架中,实现了端到端的学习。在METR-LA和PEMS-BAY两个交通网络数据集上的实验表明,Graph W
2025-05-23 12:19:28
22

原创 【时空图神经网络 & 交通】相关模型6:STGNN | 通过S-GNN层捕捉道路之间的空间关系(位置感知注意力机制),GRU捕捉局部时间依赖,Transformer捕捉全局/长期时间依赖 | 位置编码
本文提出了一种新的时空图神经网络(STGNN)框架,用于交通流量预测。该框架结合了位置图神经网络层、循环神经网络层和Transformer层,以更好地捕捉道路之间的复杂关系。STGNN通过位置注意力机制有效地聚合相邻道路的信息,同时利用循环神经网络和Transformer层捕捉局部和全局时间依赖性。实验结果表明,STGNN在真实交通数据集上优于现有方法,特别是在分钟级别的短期交通速度预测方面。
2025-05-22 20:06:26
24
1

原创 【时空图神经网络 & 交通】相关模型5:DCRNN,扩散卷积递归神经网络 | 使用扩散卷积来捕获空间依赖性,使用Seq2Seq架构来建模时间动态 | MTS:多元时间序列
本文主要介绍了扩散卷积循环神经网络(DCRNN)及其在交通流量预测中的应用。DCRNN通过将有向图上的扩散过程建模为交通流,捕捉复杂的空间依赖性,并结合序列到序列架构和调度抽样技术处理非线性时间动态。实验表明,DCRNN在两个大规模真实交通数据集上表现优异,预测精度显著提升。文章还详细探讨了扩散卷积的操作原理及其在多变量时间序列处理中的创新应用。
2025-05-21 10:47:34
259
1

原创 【时空图神经网络 & 交通】相关模型4:ASTGCN,基于注意力机制的时空图卷积网络 | 时空卷积模块:空间维度上的图卷积,时间维度上的标准卷积
文章摘要: 本文介绍了一种基于注意力的时空图卷积网络(ASTGCN)模型,用于交通流量预测。该模型通过三个独立组件分别捕捉交通流的近期、日周期和周周期依赖关系。每个组件包含时空注意力机制和时空卷积模块,前者用于动态捕捉交通数据的时空相关性,后者结合图卷积和标准卷积描述空间和时间特征。实验表明,ASTGCN在真实数据集上的预测性能优于现有模型,证明了其在处理交通数据动态时空特性方面的优势。
2025-05-20 07:04:58
52
1

原创 【时空图神经网络 & 交通】相关模型3:STFGNN | 空间-时间依赖性 | 基于数据驱动的方法来生成“时间图” | 时空融合图模块,门控卷积模块 | 动态时间规整 | 顶会文章解析
STFGNN(时空融合图神经网络)在交通流量预测中的优势主要体现在以下几个方面:首先,它提出了一种数据驱动的方法生成“时间图”,弥补了传统空间图可能无法反映的某些相关性。其次,STFGNN通过并行处理不同时间段的空间图和时间图,有效地学习隐藏的时空依赖关系。此外,它将融合图模块与门控卷积模块整合到一个统一层中,通过层层堆叠处理长序列,进一步增强了模型的表达能力。实验结果表明,STFGNN在多个交通数据集上表现出色,优于其他基准方法,展示了其在实际应用中的强大潜力。
2025-05-18 10:48:56
46
1

原创 【时空图神经网络 & 交通】相关模型2:STSGCN | 时空同步图卷积网络 | 空间相关性,时间相关性,空间-时间异质性
本文提出了一种新型的时空同步图卷积网络(STSGCN)模型,用于解决时空网络数据预测中的复杂时空相关性和异质性挑战。该模型通过构建局部时空图,并设计时空同步图卷积模块(STSGCM)来捕捉局部时空相关性。同时,模型通过在不同时间段部署多个STSGCM模块,有效捕捉了时空数据的异质性。实验结果表明,STSGCN在四个真实世界数据集上的预测性能优于其他基线方法,验证了其有效性和通用性。该研究为交通管理和城市规划等领域的时空数据预测提供了新的解决方案。
2025-05-16 17:52:34
342
1

原创 【时空图神经网络 & 交通】相关模型1:STGCN | 完全卷积结构,高效的图卷积近似,瓶颈策略 | 时间门控卷积层:GLU(Gated Linear Unit),一种特殊的非线性门控单元
本篇聚焦于智能交通系统(ITS)研究,分析经典的时空图神经网络——STGCN。【时空图神经网络 & 交通】相关模型1:STGCN | 完全卷积结构,高效的图卷积近似,瓶颈策略 | 时间门控卷积层:GLU(Gated Linear Unit),一种特殊的非线性门控单元
2025-05-15 07:41:02
50
1

原创 LibCity:开源的交通预测算法库 | 面向小白,从0到1【SUMO十字路口仿真建模】路网搭建、车辆配置、实现仿真、仿真结果输出
LibCity:开源的交通预测算法库 | 面向小白,从0到1【SUMO十字路口仿真建模】路网搭建、车辆配置、实现仿真、仿真结果输出
2025-05-14 15:10:53
113
2

原创 【SUMO】内置的路网转换工具:netconvert | 通过建立Windows批处理文件,将osm文件转换为.net.xml文件 | 生成带有人行道的路网结构 | netedit 基础使用
关于 sumo,我们需要掌握 如何从osm地图 转换成net.xml格式的路网。在【SUMO】检验环境变量是否搭建成功 | sumo仿真第一步:路网的建立 | 初识netedit | 在osm等地图中导出路网 | 利用xml文件自定义路网这篇文章中,我已经初步讲解了转换的方法。这里,我们再来回顾一下。主要用到netconvert这个插件,它的原始位置,是在我们下载的sumo的bin目录内,如下图所示。我们可以把它理解为一个sumo内置的路网转换工具。
2025-03-31 09:42:44
227
3

原创 【SUMO】检验环境变量是否搭建成功 | sumo仿真第一步:路网的建立 | 初识netedit | 在osm等地图中导出路网 | 利用xml文件自定义路网
【SUMO】检验环境变量是否搭建成功 | sumo仿真第一步:路网的建立 | 初识netedit | 在osm等地图中导出路网 | 利用xml文件自定义路网...例如,我们已知一些道路的坐标等信息,可以利用这些数据 来进一步生成路网文件。类型文件。去定义边缘的类型、优先度、道路的数量、最高限速(单位 秒/米)<types></types>需要注意,上述节点文件、边缘文件、类型文件 需要在同一目录下。
2025-03-24 08:25:19
166
3

原创 异构图---主流模型框架分析:Metapath2Vec,HAN,HGT,HetGNN | 深刻理解元路径 “Metapath” | 深刻理解异构图模型思想 | 异构图采样,特征编码,聚合邻居
Metapath2Vec,2017年提出。标题: 《metapath2vec: Scalable Representation Learning for Heterogeneous Networks》会议: KDD 2017摘要【不用念】我们研究的是异构网络中的表征学习问题。其独特的挑战来自于存在多种类型的节点和链接,这限制了传统网络嵌入技术的可行性。我们开发了两种可扩展的表征学习模型,即 metapath2vec 和 metapath2vec++。
2025-02-10 16:20:43
239
1

原创 【追光者♂】深入理解 动态图表示学习 | 如何学动态图的Representation / Embedding ?| 详解动态图神经网络 | 如何理解动态图中的“事件”?| 5种动态图表示学习方法
Graph Representation Learning,图表示学习,可以总结为一个范式:有三个部分:一部分是 Input、一部分是 Prediction,还有中间的第三部分。Input这里,DG,就是我们说的 Dynamic Graph。 了解了 动态图的输入,下面就是 根据 我们的任务 去做Prediction。那么如何去做Prediction呢? 要经过一个中间过程,这个中间过程 就是去学一个,或者说是 的这样一个过程。也就是图里边的这个ZZZ。 那么最关键的地方是在哪里,很显然,
2025-01-27 10:32:34
270
2

原创 时空序列建模:如何融合时间模型和空间模型?——时空预测中的三种经典架构 | 图神经网络:动态图(Dynamic Graph,Dynamic GNN),如何将 动态图 转换成 等价静态图?
DCRNN采用融合的方式,在RNN的每个时间步计算中,都引入了图上的信息,也就是说,RNN在每个时刻的状态更新上,考虑的不再是原来自己序列的信息,而是空间中所有序列的信息,并以邻接矩阵作为指导。:拓扑结构,或者说属性(如节点属性、边属性等等) 随时间在变化,无论是节点属性 还是边属性 还是整个图的属性 或者其他属性,至少有一个随时间在变化,就称之为动态图。就如社交网络,张三的朋友是李四,几天后,张三新交了一个朋友王五,这时候图中就多了一条节点和边,图的拓扑结构发生变化了,这就是一个动态图。
2024-12-31 08:13:31
330
1

原创 Heterogeneous Network Embedding异构图嵌入(1)| 编码器-解码器框架组成部分 | 基于矩阵因式分解、随机游走、AE自动编码器、图神经网络、知识图谱嵌入的HNE模型特点
现实世界中的复杂网络本质上是异构的;它们具有不同类型的节点、属性和关系。现有的 HNE 方法主要可分为六类:矩阵因式分解(MF)、随机漫步(RW)、自动编码器(AE)、图神经网络(GNN)、知识图嵌入(KGE)和混合(HB)方方。编码器旨在将异构网络 G 的特征 嵌入到低维向量空间,解码器旨在根据学习到的低维特征 表示重建原始异构网络的信息。其内在逻辑是,如果 模型能从编码嵌入中 重建原始网络的图结构和语义关系,那么学习到的嵌入 应该包含下游 ML 任务所需的所有信息。
2024-01-13 17:28:50
692
20

原创 【图神经网络 · 科研笔记5】异构信息网络,利用注意力选择元路径;利用进化邻域和社群实现自监督动态图嵌入,交叉监督对比学习;近期科研思维导图小汇总;
【图神经网络 · 科研笔记5】异构信息网络,利用注意力选择元路径;利用进化邻域和社群实现自监督动态图嵌入,交叉监督对比学习;近期科研思维导图小汇总;
2023-12-22 16:18:04
373
6

原创 【图神经网络 · 科研思考5】跨域节点表示学习/跨域异质性问题;图神经网络&多模态;图神经网络&大模型;迁移学习&图神经网络&跨域;GNN + Transformer
Q:在图神经网络的跨域研究中,除了上述提到的跨域异质性问题,即不同域之间的节点类型和变类型可能不同,其解决方案可以有:异构图神经网络、跨域节点对齐、跨域信息传递、多层次注意力网络、跨域知识融合等方案。同时,针对具体的问题和数据,可以结合多种方法来解决跨域异质性问题,以达到更好的效果。综上所述,除了跨域异质性问题之外,图神经网络的跨域研究还需要解决数据稀疏性、领域不平衡、域适应和标签传播等问题,而针对这些问题的解决方案包括图采样技术、信息传递方法、领域平衡的损失函数、域适应方法以及跨域标签传播算法等。
2023-12-19 18:54:01
585
5

原创 【深度学习&图神经网络】Node2Vec +GAT 完成 节点分类任务(含代码) | 附:其它生成节点特征向量的算法:DeepWalk、LINE(具体实现细节)、SDNE、MMDW
本篇主要介绍 Node2Vec+GAT 实现节点分类任务。主要分为两大步,其一是通过Node2Vec生成节点特征向量,其二是接上GAT,再去完成节点分类任务。并且在目录一中,针对图神经网络中的其他生成节点特征向量的方法,给出了它们较为详细地算法描述。
2023-08-14 08:07:57
1607
8

原创 【Python从入门到人工智能】详解 PyTorch数据读取机制 DataLoader & Dataset(以人民币-RMB二分类实战 为例讲解,含完整源代码+问题解决)| 附:文心一言测试
本篇主要讲述科研中经常用到的PyTorch与“数据”读取相关的知识。例如 如何从硬盘中读取数据,并且对数据进行预处理和数据增强操作,然后转换为张量的形式输入到模型之中等等知识。此外,基于100张1¥和100张100¥,建立了一个分类模型来实现二元分类任务。经过测试,本模型并有良好的准确性。在文末附了本篇完整的code(含数据集与图示分析等)下载地址。希望本篇对各位有帮助,谢谢大家!
2023-05-14 08:49:01
812

原创 【PyTorch 深度学习实战】基于RNN & LSTM 实现 MNIST手写数字识别 (附源代码 | 详解) | 附:解决Jupyter无法启动问题No module named‘resource‘
RNN(循环神经网络)和 LSTM(长短时记忆网络)是深度学习中两种不同类型的神经网络。它们都是为了解决一些复杂的任务,如序列到序列的预测、序列到单词的翻译等。RNN主要用于处理序列数据,它有一个时间步长的概念。在每个时间步长内,RNN可以从之前的时间步长中获取信息,并对当前的输入进行计算。这使得RNN能够对长序列进行有效的建模。LSTM主要用于处理连续数据,它结合了 RNN和 CNN的特点。LSTM的输入序列被分成一系列的小段(称为“时间步长”),每个时间步长都被看作是一个记忆单元。这使得 LSTM能够对
2023-05-02 15:40:46
1192
2

原创 <3>【深度学习 × PyTorch】必会 线性代数 (含详细分析):点积 | 矩阵-向量积 | Hadamard积 | 矩阵乘法 | 范数/矩阵范数
【这两节介绍了不少线性代数的基础知识,这是机器学习/深度学习的基础知识。多次回顾,多次练习,会有不同的体验】理解现代深度学习的一门必学的课程——线性代数。 线性代数有很多知识,其中很多数学知识对于机器学习非常有用。 例如,矩阵可以分解为因子,这些分解可以显示真实世界数据集中的低维结构。 机器学习的整个子领域都侧重于使用矩阵分解及其向高阶张量的泛化,来发现数据集中的结构并解决预测问题。 当开始动手尝试并在真实数据集上应用了有效的机器学习模型,你会更倾向于学习更多数学。
2023-04-29 09:13:23
5776

原创 <2>【深度学习 × PyTorch】pandas | 数据预处理 | 处理缺失值:插值法 | networkx模块绘制知识图谱 | 线性代数初步
为了能用深度学习来解决现实世界的问题,我们经常从预处理原始数据开始, 而不是从那些准备好的张量格式数据开始。 在Python中常用的数据分析工具中,我们通常使用pandas软件包。像庞大的Python生态系统中的许多其他扩展包一样,pandas可以与张量兼容。 本篇我们将简要介绍使用pandas预处理原始数据,并将原始数据转换为张量格式的步骤。 后续也将介绍更多的数据预处理技术。
2023-04-27 15:51:26
10630
2

原创 【自然语言处理】Gensim库 之 Word2vec | 实战练习:对小说《三国演义》进行Word2Vec训练(附:源代码 + 完整解析)
今天,来介绍Gensim库的一些知识。在自然语言处理中,不得不提到Gensim库,它是一个用于从文档中自动提取语义主题的Python库,且“足够智能”。gensim中的算法是无监督的,也就是说我们只需要一个语料库的文档集。当得到统计模式后,任何文本都能够用语义表示(semantic representation)来简介的表达,并得到一个局部的相似度来与其它文本区分开来。最后实战练习,针对《三国演义》小说。
2023-04-12 08:06:06
1170

原创 【Neo4j × 知识图谱】图形化数据库基本操作: 创建节点与关系、添加属性、查询节点 | 附:可视化 构建四大名著 知识图谱(含源代码)| word2vec实战: 构造斗罗大陆人物关系
本篇,在目录一中,较为详细地以实例化的方式介绍了Neo4j的基础语法,例如怎样启动Neo4j数据库、怎样在PyCharm中连接Neo4j数据库、怎样创建简单的节点、如何给节点间添加关系和属性、如何查询节点等。目录二中,基于目录一种的语法,针对四大名著数据集,以知识图谱的方式对其进行可视化。
2023-04-05 15:42:36
1316
2

原创 【Neo4j × Python】基于知识图谱的电影问答系统(含问题记录与解决)附:源代码(含Bug解决)
此前,曾介绍过Neo4j的一些基础知识,本篇将在PyCharm中与Neo4j建立关联,从0到1实现一个基于知识图谱的电影问答系统,实现过程中,没有一帆风顺,而是遇到了一些问题,因此也包含问题的记录与解决。
2023-04-04 07:56:29
2749
2

原创 再相逢【知识图谱】中文医学知识图谱CMeKG,中文产科医学知识图谱COKG | 附:图数据库Neo4j下载安装教学(遇到问题并解决) + Neo4j基本操作
本篇文章介绍知识图谱的相关知识。从便于理解的角度切入,给出知识图谱的形象化定义,并介绍了国内的中文医学知识图谱CMeKG,还以用户视角体验了中文产科医学知识图谱。目录二介绍了如何部署安装Neo4j数据库,并解决了部署过程中遇到的一些基础错误,随后介绍了Neo4j图数据库的基础操作。
2023-04-02 08:11:51
2090
5

原创 通俗理解【图神经网络】计算过程:只考虑邻接矩阵的消息传递&考虑度矩阵后的消息传递 | 图注意力网络GAT:图注意力的两种计算方式;实现图注意力;加入Multi-head机制的GAT | 压缩矩阵理解
本篇可作为科普食用。许多朋友在初次看“图神经网络”的相关Paper时,会涉及到比较多的公式,可能会难以理解。本文,从通俗的角度,来讲解“图神经网络”的计算过程。并再次讲解了图注意力网络GAT的两种计算方式,以及加入了Multi-head的GAT,并给出了具体实现。
2023-03-14 16:09:45
636
15

原创 全15万字丨PyTorch 深度学习实践、基础知识体系全集;忘记时,请时常回顾。
本篇博客介绍的知识是——深度学习之PyThon框架基础。这是深度学习/神经网络的基础,多次回顾,会有不一样的感受。书读百遍,其义自见。
2023-02-20 21:38:08
4942
52

原创 2023.2.9,周四【图神经网络 学习记录26】动态超图 之 DHNN (DHGNN):动态构建超图 (DHG): KNN/KMeans,超图卷积 (HGC)。
动态超图 之 DHNN (DHGNN):动态构建超图 (DHG):KNN/KMeans,超图卷积 (HGC)。
2023-02-09 20:52:08
1315
6

原创 2023.2.9,周四【图神经网络 学习记录25】HGNN(超图):节点的度,“边的度”;节点集合,超边集合,每个超边被赋予的权值。
【图神经网络 学习记录25】HGNN(超图):节点的度,“边的度”;节点集合,超边集合,每个超边被赋予的权值。
2023-02-09 15:20:12
1056

原创 2023.2.8,周三【图神经网络 学习记录21】动态图分类(重点 以离散网络 和 连续型网络为例);DySAT算法:快照,结构Self-Attention构造,时域Self-Attention的计算
【图神经网络 学习记录21】动态图分类(重点 以离散网络 和 连续型网络为例);DySAT算法:快照,结构Self-Attention构造,时域Self-Attention的计算
2023-02-08 11:15:00
572
4

原创 2023.2.1,周三【图神经网络 学习记录15】异构图Graph Embedding算法——metapath2vec学习+详细Debug调试;附:win11找不到DNS地址,重启也不好使,解决办法
【图神经网络 学习记录15】异构图Graph Embedding算法——metapath2vec学习+详细Debug调试;
2023-02-01 23:43:11
466
1

原创 2023.1.31,周二【图神经网络 学习记录14】GTN模型(Graph Transformer Networks)——详细Debug调试过程。
2023.1.31,周二【图神经网络 学习记录14】GTN模型(Graph Transformer Networks)——详细Debug调试过程。
2023-02-01 09:41:06
844

原创 2023.1.30,周一【图神经网络 学习记录13】异构图的另一个算法:GTN(Graph Transformer Networks);GTN模型练习——问题记录:16G运行内存,却提示内存不足
【图神经网络 学习记录13】异构图的另一个算法:GTN(Graph Transformer Networks);GTN模型练习——问题记录:16G运行内存,却提示内存不足,尝试通过 微调各个参数 来解决。简单介绍:训练集、验证集、测试集的区别与联系。
2023-01-31 14:47:00
523
2
【CSDN@追光者♂】一种基于图深度强化学习的自适应交通信号控制方法【交通信号控制-专利撰写思路】含有权利要求书、说明书Word原版.zip
2025-04-18
【助理实验师-面试题目备考】jd文职.zip
2025-04-09
面试题网络工程师&IT工程师 技术面(问答&解析)【CSDN@追光者♂】.zip
2025-02-16
解决问题联想拯救者Y7000P-1060 电池电量一直显示0.zip
2025-02-07
【完整安装包】Acrobat Pro DC v2020(附说明).zip
2024-08-22
卸载工具Adobe Creative Cloud Cleaner Tool.zip
2024-08-22
小工具一款卸载电脑顽固软件的神器Geek-Uninstaller-CSDN@追光者♂.zip
2024-08-22
基于Python对空气质量监测数据分析以及可视化(含完整可执行代码、数据集).zip
2024-07-17
深度学习&数据挖掘【时间序列预测】常用数据集-Datasets:电力数据集、空气质量数据集、ETTh系列、ETTm系列等.zip
2024-07-11
【智能交通系统ITS-常用数据集Datasets合集】PEMS系列、METR-LA(含有详细Weather天气数据集).zip
2024-07-10
【数据集Dataset】ExchangeRate.csv(金融大数据分析、时间序列建模、时间序列预测常用).zip
2024-07-10
【win11也适用】HDFView安装包.zip
2024-05-09
Python-科研绘图练习-4(可执行案例代码,含输出图像):绘制多种情况下的柱状图(条形图).zip
2024-05-08
实战代码基于Python&PyCharm-科研绘图综合练习(折线图、子图、柱状图)-3.zip
2024-05-07
前端实战-酷炫黑白粒子空间旋转特效(效果+可执行代码)-HTML+CSS+JavaScript.zip
2024-04-23
科研24年四月中旬文章合集.zip
2024-04-22
交通预测:扩散卷积递归神经网络DCRNN代码 + 文章.zip
2024-04-18
交通预测模型合集:STGCN、DCRNN、ASTGCN、Graph wavenet、STGNN、STSGCN、STFGNN
2024-04-17
【metr-la.h5、pems-bay.h5数据集】含初步查看数据集的可执行Python代码.zip
2024-04-14
【Traffic Transformer】(code,数据集)-科研.zip
2024-04-14
【交通流量预测】-3.zip
2024-04-11
【交通流量预测】-2.zip
2024-04-11
【交通流量预测】-1.zip
2024-04-11
sumo交通建模-过程性成果(完成十字交通路口车辆流向配置).zip
2024-03-29
METR-LA.h5数据集(含初始数据集;含划分好的训练集、验证集、测试集;含划分所用代码)【智能交通系统】-交通流预测.zip
2024-03-25
SCI & PyCharm科研绘图练习240322-CSDN@追光者♂.zip
2024-03-22
最新版Git压缩包 及安装步骤说明240320.zip
2024-03-20
data-【SUMO交通流仿真小案例】240319.zip
2024-03-19
HTML炫酷多彩粒子特效(可执行代码+效果演示).zip
2024-03-18
【SUMO交通仿真】路网资源教学-240316-Road-Network.zip
2024-03-18
osm地图转.net.xml格式240317.zip
2024-03-17
简约-爱在心中(HTML文字环绕爱心特效)-完整可执行代码与效果展示
2024-03-15
HTML+CSS+JavaScript 让爱旋转(爱心旋转特效)-CSDN@追光者♂.zip
2024-02-06
HTML+CSS+JavaScript-无穷可爱爱心喷射特效-CSDN@追光者♂.zip
2024-01-15
【HTML+CSS+JavaScript】手绘-前端特效-真心可爱小人表白(完整可执行代码资源)CSDN@追光者♂.zip
2024-01-11
代码资源仅个人保存:tgn-master、DGI-master、AutoST-main-20240104.zip
2024-01-04
这是一次警告的记录,需要怎么解决呢?
2022-10-14
TA创建的收藏夹 TA关注的收藏夹
TA关注的人