深度学习【PyTorch 基础回顾】PyTorch & Tensor 主要特点 | 再次认识 Tensor(张量)| 详细实例讲述 | PyTorch中文文档 | 基于PyTorch实现手写数字识别

本文回顾PyTorch的主要特点,强调动态图模式、内存管理及硬件抽象等。深入探讨PyTorch中的tensor,包括其动态张量特性、自动转换和自动求导功能。通过实例演示,如创建、转换、运算和操作张量,如创建全0张量、对角线为1的张量、numpy到tensor的转换、张量连接与切分等,帮助理解张量在深度学习中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 
每一个温暖的夜晚,在月光下入眠,用一辈子的时间,让那光亮进到你体内,然后你就会发光。总有一天,月亮会觉得,你才是月亮。——————星野道夫《森林、冰河与鲸》

 

🎯作者主页: 追光者♂🔥

        

🌸个人简介:
 
💖[1] 计算机专业硕士研究生💖
 
🌟[2] 2022年度博客之星人工智能领域TOP4🌟
 
🏅[3] 阿里云社区特邀专家博主🏅
 
🏆[4] CSDN-人工智能领域优质创作者🏆
 
📝[5] 预期2023年10月份 · 准CSDN博客专家📝  
 

  • 无限进步,一起追光!!!

        

🍎感谢大家 点赞👍  收藏⭐   留言📝!!!

        

🌿PyTorch是一个由 Facebook开发的开源深度学习框架,它最初是为了研究人员和工程师开发的,现在已经成为了广泛使用的深度学习工具。PyTorch的核心设计理念是简化深度学习模型的开发和训练过程,它提供了一套易于使用的API,可以帮助开发者在各种硬件上加速训练和推理过程。本篇将回顾 PyTorch基础。
 

附,关于tensor,此前曾介绍过:(包括但不限于下述文章,其它请在博主主页按关键词检索即可)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追光者♂

谢谢你呀!一起加油!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值