天池零基础入门推荐系统新闻推荐之特征工程03

本文介绍了一种将用户历史点击行为转化为监督学习任务的方法,并详细阐述了如何构造新特征以提高推荐系统的准确性。通过计算候选文章与用户过去点击文章间的相似度、字数差异及时间差等统计特征,为推荐模型提供了丰富的上下文信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

制作特征和标签, 转成监督学习

  基于召回的原来特征和新构造的特征拼接在一起,构造成一个监督数据集,目的是预测最后一次点击的文章。
  新构造的特征需要结合用户的历史点击文章信息,所以可以想到大概四方面:

  1. 候选item与最后几次点击的相似性特征(embedding内积) — 这个直接关联用户历史行为
  2. 候选item与最后几次点击的相似性特征的统计特征 — 统计特征可以减少一些波动和异常
  3. 候选item与最后几次点击文章的字数差的特征 — 可以通过字数看用户偏好
  4. 候选item与最后几次点击的文章建立的时间差特征 — 时间差特征可以看出该用户对于文章的实时性的偏好
  5. 如果使用了youtube召回的话, 我们还可以制作用户与候选item的相似特征

历史特征拼接

# 下面基于历史数据和召回结果做特征
def create_feature(users_id, recall_list, click_hist_df,  articles_info, articles_emb, user_emb=None, N=1):
    """
    基于用户的历史行为做相关特征
    :param users_id: 用户id
    :param recall_list: 对于每个用户召回的候选文章列表
    :param click_hist_df: 用户的历史点击信息
    :param articles_info: 文章信息
    :param articles_emb: 文章的embedding向量, 这个可以用item_content_emb, item_w2v_emb, item_youtube_emb
    :param user_emb: 用户的embedding向量, 这个是user_youtube_emb, 如果没有也可以不用, 但要注意如果要用的话, articles_emb就要用item_youtube_emb的形式, 这样维度才一样
    :param N: 最近的N次点击  由于testA日志里面很多用户只存在一次历史点击, 所以为了不产生空值,默认是1
    """
    
    # 建立一个二维列表保存结果, 后面要转成DataFrame
    all_user_feas = []
    i = 0
    for user_id in tqdm(users_id):
        # 该用户的最后N次点击
        hist_user_items = click_hist_df[click_hist_df['user_id']==user_id]['click_article_id'][-N:]
        
        # 遍历该用户的召回列表
        for rank, (article_id, score, label) in enumerate(recall_list[user_id]):
            # 该文章建立时间, 字数
            a_create_time = articles_info[articles_info['article_id']==article_id]['created_at_ts'].values[0]
            a_words_count = articles_info[articles_info['article_id']==article_id]['words_count'].values[0]
            single_user_fea = [user_id, article_id]
            # 计算与最后点击的商品的相似度的和, 最大值和最小值, 均值
            sim_fea = []
            time_fea = []
            word_fea = []
            # 遍历用户的最后N次点击文章
            for hist_item in hist_user_items:
                b_create_time = articles_info[articles_info['article_id']==hist_item]['created_at_ts'].values[0]
                b_words_count = articles_info[articles_info['article_id']==hist_item]['words_count'].values[0]
                
                sim_fea.append(np.dot(articles_emb[hist_item], articles_emb[article_id]))
                time_fea.append(abs(a_create_time-b_create_time))
                word_fea.append(abs(a_words_count-b_words_count))
                
            single_user_fea.extend(sim_fea)      # 相似性特征
            single_user_fea.extend(time_fea)    # 时间差特征
            single_user_fea.extend(word_fea)    # 字数差特征
            single_user_fea.extend([max(sim_fea), min(sim_fea), sum(sim_fea), sum(sim_fea) / len(sim_fea)])  # 相似性的统计特征
            
            if user_emb:  # 如果用户向量有的话, 这里计算该召回文章与用户的相似性特征 
                single_user_fea.append(np.dot(user_emb[user_id], articles_emb[article_id]))
                
            single_user_fea.extend([score, rank, label])    
            # 加入到总的表中
            all_user_feas.append(single_user_fea)
    
    # 定义列名
    id_cols = ['user_id', 'click_article_id']
    sim_cols = ['sim' + str(i) for i in range(N)]
    time_cols = ['time_diff' + str(i) for i in range(N)]
    word_cols = ['word_diff' + str(i) for i in range(N)]
    sat_cols = ['sim_max', 'sim_min', 'sim_sum', 'sim_mean']
    user_item_sim_cols = ['user_item_sim'] if user_emb else []
    user_score_rank_label = ['score', 'rank', 'label']
    cols = id_cols + sim_cols + time_cols + word_cols + sat_cols + user_item_sim_cols + user_score_rank_label
            
    # 转成DataFrame
    df = pd.DataFrame( all_user_feas, columns=cols)
 
    return df

新特征拼接

对于用户和商品还可以构造的特征:

  • 基于用户的点击文章次数和点击时间构造可以表现用户活跃度的特征

  • 基于文章被点击次数和时间构造可以反映文章热度的特征

  • 用户的时间统计特征: 根据其点击的历史文章列表的点击时间和文章的创建时间做统计特征,比如求均值, 这个可以反映用户对于文章时效的偏好

  • 用户的主题爱好特征, 对于用户点击的历史文章主题进行一个统计, 然后对于当前文章看看是否属于用户已经点击过的主题

  • 用户的字数爱好特征, 对于用户点击的历史文章的字数统计, 求一个均值

#辅助函数
#active_level :判断用户活跃度
#hot_level:判断新闻热度

def active_level(all_data, cols):
    """
    制作区分用户活跃度的特征
    :param all_data: 数据集
    :param cols: 用到的特征列
    """
    data = all_data[cols]
    data.sort_values(['user_id', 'click_timestamp'], inplace=True)
    user_act = pd.DataFrame(data.groupby('user_id', as_index=False)[['click_article_id', 'click_timestamp']].\
                            agg({'click_article_id':np.size, 'click_timestamp': {list}}).values, columns=['user_id', 'click_size', 'click_timestamp'])
    
    # 计算时间间隔的均值
    def time_diff_mean(l):
        if len(l) == 1:
            return 1
        else:
            return np.mean([j-i for i, j in list(zip(l[:-1], l[1:]))])
        
    user_act['time_diff_mean'] = user_act['click_timestamp'].apply(lambda x: time_diff_mean(x))
    
    # 点击次数取倒数
    user_act['click_size'] = 1 / user_act['click_size']
    
    # 两者归一化
    user_act['click_size'] = (user_act['click_size'] - user_act['click_size'].min()) / (user_act['click_size'].max() - user_act['click_size'].min())
    user_act['time_diff_mean'] = (user_act['time_diff_mean'] - user_act['time_diff_mean'].min()) / (user_act['time_diff_mean'].max() - user_act['time_diff_mean'].min())     
    user_act['active_level'] = user_act['click_size'] + user_act['time_diff_mean']
    
    user_act['user_id'] = user_act['user_id'].astype('int')
    # 因为后面要拼接,所以删去重复的
    del user_act['click_timestamp']
    
    return user_act


def hot_level(all_data, cols):
    """
    制作衡量文章热度的特征
    :param all_data: 数据集
    :param cols: 用到的特征列
    """
    data = all_data[cols]
    data.sort_values(['click_article_id', 'click_timestamp'], inplace=True)
    article_hot = pd.DataFrame(data.groupby('click_article_id', as_index=False)[['user_id', 'click_timestamp']].\
                               agg({'user_id':np.size, 'click_timestamp': {list}}).values, columns=['click_article_id', 'user_num', 'click_timestamp'])
    
    # 计算被点击时间间隔的均值
    def time_diff_mean(l):
        if len(l) == 1:
            return 1
        else:
            return np.mean([j-i for i, j in list(zip(l[:-1], l[1:]))])
        
    article_hot['time_diff_mean'] = article_hot['click_timestamp'].apply(lambda x: time_diff_mean(x))
    
    # 点击次数取倒数
    article_hot['user_num'] = 1 / article_hot['user_num']
    
    # 两者归一化
    article_hot['user_num'] = (article_hot['user_num'] - article_hot['user_num'].min()) / (article_hot['user_num'].max() - article_hot['user_num'].min())
    article_hot['time_diff_mean'] = (article_hot['time_diff_mean'] - article_hot['time_diff_mean'].min()) / (article_hot['time_diff_mean'].max() - article_hot['time_diff_mean'].min())     
    article_hot['hot_level'] = article_hot['user_num'] + article_hot['time_diff_mean']
    
    article_hot['click_article_id'] = article_hot['click_article_id'].astype('int')
    
    del article_hot['click_timestamp']
    
    return article_hot
#用户的设备习惯,用众数来填充
def device_fea(all_data, cols):
    """
    制作用户的设备特征
    :param all_data: 数据集
    :param cols: 用到的特征列
    """
    user_device_info = all_data[cols]
    
    # 用众数来表示每个用户的设备信息
    user_device_info = user_device_info.groupby('user_id').agg(lambda x: x.value_counts().index[0]).reset_index()
    
    return user_device_info
device_cols = ['user_id', 'click_environment', 'click_deviceGroup', 'click_os', 'click_country', 'click_region', 'click_referrer_type']
user_device_info = device_fea(all_data, device_cols)



#用户的时间习惯
def user_time_hob_fea(all_data, cols):
    """
    制作用户的时间习惯特征
    :param all_data: 数据集
    :param cols: 用到的特征列
    """
    user_time_hob_info = all_data[cols]
    
    # 先把时间戳进行归一化
    mm = MinMaxScaler()
    user_time_hob_info['click_timestamp'] = mm.fit_transform(user_time_hob_info[['click_timestamp']])
    user_time_hob_info['created_at_ts'] = mm.fit_transform(user_time_hob_info[['created_at_ts']])

    user_time_hob_info = user_time_hob_info.groupby('user_id').agg('mean').reset_index()
    
    user_time_hob_info.rename(columns={'click_timestamp': 'user_time_hob1', 'created_at_ts': 'user_time_hob2'}, inplace=True)
    return user_time_hob_info

user_time_hob_cols = ['user_id', 'click_timestamp', 'created_at_ts']
user_time_hob_info = user_time_hob_fea(all_data, user_time_hob_cols)



#用户的主题爱好
#这里先把用户点击的文章属于的主题转成一个列表,后面再总的汇总的时候单独制作一个特征,就是文章的主题如果属于这里面,就是1,否则就是0。
def user_cat_hob_fea(all_data, cols):
    """
    用户的主题爱好
    :param all_data: 数据集
    :param cols: 用到的特征列
    """
    user_category_hob_info = all_data[cols]
    user_category_hob_info = user_category_hob_info.groupby('user_id').agg({list}).reset_index()
    
    user_cat_hob_info = pd.DataFrame()
    user_cat_hob_info['user_id'] = user_category_hob_info['user_id']
    user_cat_hob_info['cate_list'] = user_category_hob_info['category_id']
    
    return user_cat_hob_info
user_category_hob_cols = ['user_id', 'category_id']
user_cat_hob_info = user_cat_hob_fea(all_data, user_category_hob_cols)



#用户的字数习惯
user_wcou_info = all_data.groupby('user_id')['words_count'].agg('mean').reset_index()
user_wcou_info.rename(columns={'words_count': 'words_hbo'}, inplace=True)

#特征的合并
user_info = pd.merge(user_act_fea, user_device_info, on='user_id')
user_info = user_info.merge(user_time_hob_info, on='user_id')
user_info = user_info.merge(user_cat_hob_info, on='user_id')
user_info = user_info.merge(user_wcou_info, on='user_id')
user_info.to_csv(save_path + 'user_info.csv', index=False)  

最后的Index

Index(['user_id', 'click_article_id', 'sim0', 'time_diff0', 'word_diff0',
,       'sim_max', 'sim_min', 'sim_sum', 'sim_mean', 'score', 'rank', 'label',
,       'click_size', 'time_diff_mean', 'active_level', 'click_environment',
,       'click_deviceGroup', 'click_os', 'click_country', 'click_region',
,       'click_referrer_type', 'user_time_hob1', 'user_time_hob2', 'cate_list',
,       'words_hbo'],
,      dtype='object')

参考资料:
天池零基础入门推荐系统

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值