@Async注解失效及原理

文章讨论了Spring框架中@Async注解的失效情况,包括非public方法、返回值限制、静态方法、同一类内部调用、自动注入和事务管理。核心在于@Async依赖动态代理机制,同一类内部直接调用导致注解失效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个注解是存在失效的情况的,其中最容易触犯的是以下几个情况
• 注解@Async的方法不是public方法
• 注解@Async的返回值只能为void或者Future
• 注解@Async方法使用static修饰也会失效
• spring无法扫描到异步类,没加注解@Async 或 @EnableAsync注解
• 调用方与被调方不能在同一个类
• 类中需要使用@Autowired或@Resource等注解自动注入,不能自己手动new对象
• 在Async 方法上标注@Transactional是没用的,但在Async 方法调用的方法上标注@Transactional 是有效的

之所以在一个类里面会失效,简单来说就是,@Async之所以能生效,是因为Spring给他生成了一个子类,也就是proxy代理类。如果在一个类里面就没办法了。详细如下:
• Spring 在扫描bean的时候会扫描方法上是否包含@Async注解,动态地生成一个子类(即proxy代理类),当这个有注解的方法被调用的时候,实际上是由代理类来调用的,代理类在调用时增加异步作用
• 如果这个有注解的方法是被同一个类中的其他方法调用的,那么该方法的调用并没有通过代理类,而是直接通过原来的那个 bean,所以就失效了
• 所以调用方与被调方不能在同一个类,主要是使用了动态代理,同一个类的时候直接调用,不是通过生成的动态代理类调用
• 一般将要异步执行的方法单独抽取成一个类

<think>好的,我现在需要帮助用户解决PyCharm与Python环境配置及pip库安装的问题。用户是新手,所以步骤必须详细且按顺序排列。首先,我应该结合用户提供的引用内容,特别是引用2和引用3,因为它们提到了Anaconda、Python安装以及PyCharm的使用。 首先,用户可能需要先安装Python或Anaconda。根据引用2,Anaconda更方便,因为它自带了很多库,避免了单独安装的麻烦。所以第一步应该是建议用户安装Anaconda,这样Python环境就配置好了,同时包括pip和常用库。如果用户选择安装Python,需要指导他们正确配置环境变量和安装pip,但引用2提到Anaconda更容易,可能更适合新手。 接下来是PyCharm的安装,引用3详细介绍了PyCharm的功能和安装步骤。需要指导用户下载安装PyCharm,并创建新项目。在PyCharm中配置Python解释器是关键步骤,这里需要引导用户选择已安装的Anaconda环境或Python解释器路径。 然后是pip的使用,虽然Anaconda已经自带了很多库,但用户可能还需要安装其他库。这时候需要说明如何在PyCharm的终端中使用pip命令,或者通过IDE的图形界面安装包。同时要注意,如果用户使用Anaconda,可能更推荐使用conda install,但pip也是通用的方法。 最后,验证环境是否配置成功,可以创建一个测试脚本,比如打印Hello World,或者导入numpy库看是否报错。这能帮助用户确认一切设置正确。 可能还需要提醒用户常见问题,比如环境变量未正确配置导致PyCharm找不到Python解释器,或者pip安装库时权限问题。此外,引用1提到通过命令提示符查看Python环境,这可以用来检查Anaconda是否正确安装。 现在需要将这些步骤按顺序组织,确保清晰易懂。可能需要分步说明,从安装Python/Anaconda开始,然后安装PyCharm,接着配置解释器,最后使用pip安装库。同时,引用相关引用内容来支持步骤,比如引用2解释为什么推荐Anaconda,引用3指导PyCharm的具体操作。</think>以下是PyCharm与Python环境配置及pip库安装的详细操作步骤,按新手友好顺序排列: ### 一、Python环境配置(二选一) **方案A:通过Anaconda安装(推荐新手)** 1. 访问[Anaconda官网](https://www.anaconda.com/download)下载对应系统版本 2. 安装时勾选`Add Anaconda to PATH`环境变量[^2] 3. 完成安装后,在命令提示符输入`python --version`验证是否显示`Python 3.x.x :: Anaconda`[^1] **方案B:直接安装Python** 1. 访问[Python官网](https://www.python.org/downloads/)下载最新稳定版 2. 安装时务必勾选`Add Python to PATH`和`Install pip`[^2] 3. 验证:`win+r`输入`cmd`执行`python -V`和`pip -V`应有版本号显示 ### 二、PyCharm安装配置 1. 下载[PyCharm Community版](https://www.jetbrains.com/pycharm/) 2. 安装时建议勾选`Add launchers dir to the PATH`和`.py文件关联`[^3] 3. 新建项目时配置Python解释器: ```text File → New Project → Python Interpreter → 点击齿轮图标 → Add Local Interpreter → 选择Anaconda或Python安装路径的python.exe ``` ### 三、pip库管理实操 **方法1:终端命令(通用)** 1. 在PyCharm底部工具栏打开`Terminal` 2. 安装库:`pip install 库名`(如`pip install numpy`) 3. 卸载库:`pip uninstall 库名` **方法2:图形界面(新手友好)** 1. 点击PyCharm菜单:`File → Settings → Project → Python Interpreter` 2. 点击`+`号搜索/安装库,支持版本选择和批量操作 ### 四、环境验证 创建`test.py`文件: ```python import numpy as np print("Hello PyCharm!") print("numpy版本:", np.__version__) ``` 右键运行若正常输出即表示环境配置成功。 ### 常见问题排查 1. **解释器找不到**:检查Python/Anaconda是否安装且路径正确[^1] 2. **pip安装失败**:尝试`python -m pip install --upgrade pip`更新pip 3. **权限问题**:在命令前添加`sudo`(Mac/Linux)或以管理员身份运行CMD(Windows)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值