深度学习之目标检测--Pytorch实战

本文详细介绍了使用Pytorch进行深度学习目标检测的环境配置,包括Anaconda、pytorch、pyCharm等的安装,以及数据集下载、工具类使用、神经网络搭建、项目实战等内容,涵盖Yolo v5训练、视频检测、COCO数据集训练等应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计31268字,阅读大概需要30分钟
🌈更多学习内容, 欢迎👏关注👀我的个人微信公众号:不懂开发的程序猿
个人网站:https://jerry-jy.co/

一、配置环境

安装Anaconda

先检查电脑配置:NVIDIA RTX2060 + i7-10750H
我这里使用的是Windows操作系统 + 集成显卡:Inter® UHD Graphics + 独立显卡:NVIDIA RTX2060 ,以下实验基于此配置
在这里插入图片描述
安装的链接地址:Anacodan安装包官网地址https://repo.anaconda.com/archive/
这里我选择的是Anaconda3-5.2.0-Windows-x86_64,根据自己的操作系统选对应的版本,下载下来,右键管理员运行安装

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不懂开发的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值