《论文阅读》Supervised Prototypical Contrastive Learning for Emotion Recognition in Conversation

31 篇文章 ¥29.90 ¥99.00
本文提出了一种监督原型对比学习(SPCL)方法,结合原型网络和课程学习,用于解决对话情绪识别(ERC)任务中的情感类别不平衡和文本信息不足问题。在三个基准数据集上取得最佳结果,证明了SPCL和课程学习策略的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

出版:EMNLP2022

时间:2022

类型:结合监督学习+课程学习

特点:解决情感类标签不平衡问题+文本信息不充分问题

作者:Xiaohui Song, Longtao Huang, Hui Xue and Songlin Hu

第一作者机构:Institute of Information Engineering, Chinese Academy of Sciences

简介

在对话中捕捉情绪在现代对话系统中起着至关重要的作用。然而,情绪和语义之间的弱相关性给对话中的情绪识别(ERC)带来了许多挑战。即使是语义相似的话语,情绪也可能因上下文或说话者而发生巨大变化。在本文中,我们为 ERC 任务提出了监督原型对比学习 (SPCL) 损失。利用原型网络,SPCL 旨在通过对比学习解决不平衡分类问题,并且不需要大批量。同时,我们设计了一个基于类别距离的难度测量函数,并引入课程学习来缓解极端样本的影响。我们在三个广泛使用的基准上取得了最先进的结果。此外,我们进行分析实验来证明我们提出的 SPCL 和课程学习策略的有效性。我们在 https://github.com/caskcsg/SPCL 发布代码。

解决问题

  1. ERC 任务旨在根据谈话内容识别对话中每个回合的不同情绪。难点包括:多个对话者、多个轮次,并且不仅要考虑文本信息还要考虑上下文信息

  2. 虽然近些年将对比学习应用到自监督表示学习中,并且也有

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

365JHWZGo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值