《论文阅读》Cluster-Level Contrastive Learning for Emotion Recognition in Conversations

本文介绍了《Cluster-Level Contrastive Learning for Emotion Recognition in Conversations》论文,探讨了在对话情感识别中如何区分相近情感的挑战。作者提出了一种监督聚类级别的对比学习(SCCL)方法,利用NRC_VAD将情感向量表示为三维,增强模型可解释性,并通过原型思想促进情感样本的聚类。尽管这种方法可能导致信息损失,但其创新思路仍值得关注。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《论文阅读》Cluster-Level Contrastive Learning for Emotion Recognition in Conversations

前言

你是否也对于理解论文存在困惑?

你是否也像我之前搜索论文解读,得到只是中文翻译的解读后感到失望?

小白如何从零读懂论文?和我一起来探索吧!

今天为大家带来的是《Cluster-Level Contrastive Learning for Emotion Recognition in Conversations》

在这里插入图片描述


出版: CoRR abs

时间: 2023

类型:对话中的情感识别

特点:监督对比学习+情感分类+RoBERTa

作者:Kailai Yang

第一作者机构:The University of Manchester

github:https://github.com/SteveKGYang/SCCL

简介

思路出发点

这篇文章提到的很有趣的点:

  1. 在ERC中实际上的挑战在于区分语义相近的情感(高兴和激动),而不是区分不同极

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

365JHWZGo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值