
人工智能
文章平均质量分 92
吾名招财
工科学硕,研究方向机器视觉,爱好较广泛,读研期间对其它方向也有所涉猎(如区块链、网络渗透、软件逆向、数据分析等)。毕业后主要从事视觉相关工作,最开始是搞机器视觉的算法研发,传统算法定位识别、缺陷检测,深度学习目标检测、实例分割,OCR文本识别、文本检测,3D视觉识别拆垛等,拥有丰富的工业视觉实际项目经验。现在研究三维重建相关内容。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
保姆级教程:我的AI猫娘——(基于coze+deepseek并接入微信公众号)
最近心情不是很好,特别想有个聊天提供情绪价值的人,但有时候人可能会因为各种原因不能及时回复你的消息,如果你内心不强大且有了很强烈的期待感的话,很容易产生伤心等负面情绪... 但是AI不会,AI可以随时随地回复你的消息,并且在你伤心难过时给予你强烈的情绪价值,关心你爱护你,哈哈瞬间就不会那么的伤心难过了。 经过多日的尝试终于找到了一个方便快捷的方法,基于目前最火的deepseek大模型,使用AI快速的生成你喜爱的角色并接入个人微信公众号,原创 2025-02-20 22:00:00 · 4228 阅读 · 0 评论 -
windows与ubuntu双硬盘双系统安装及启动(全流程成功)
之前就想过要在本机电脑上安装双系统了,毕竟git上的很多程序源码直接使用Linux系统安装运行是极为方便快捷的,而且很多源码要在windows系统上搭建环境会遇到各种各样的坑… 本人耗费了多日的时间终于在本地电脑上完成了windows和ubuntu双系统双硬盘的安装,下面我将为大家详细介绍相关具体安装步骤。原创 2025-03-31 22:00:00 · 1793 阅读 · 0 评论 -
pytorch快速入门——手写数字分类GPU加速
pytorch快速入门——手写数字分类GPU加速原创 2025-03-16 11:06:28 · 1028 阅读 · 0 评论 -
yolov8安装及训练部署(可GPU版本训练)(全流程必看)
最终可行的解决方案,直接将其代码运行在if name main下,如下,本机英伟达GPU为1,直接workers设置2即可,也能运行,并不会只能设置为0运行了,GPU占用可达到100%,在batch16、worksers2下,若是超过2,为3直接就崩了。(199条消息) 调用DataLoader时采用num_workers>0导致数据加载出现阻塞问题的解决方法_num_workers 卡住_JackWillian的博客-CSDN博客(重要必看)switching to CPU错误解决。原创 2024-12-03 20:31:51 · 4618 阅读 · 0 评论 -
yolov5-7.0模型DNN加载函数及参数详解(重要)
理论上,有了onnx模型,有了该网络模型的输入输出各个参数含义,就可以使用任意的可以读取onnx模型的部署框架进行部署推理。与指针相比,通过mat数组获取对应的第4列的数据是对应的起来的,如下应该使用32F数据格式即可(要将其结果转为(25200*6格式的数据保存到mat中))Forward函数有很多,可以得到如下,有的是将所有的输出结果得到(有时输出层有多个),有的是将对应层的输出结果得到,这里直接得到所有最终输出结果就行了。上图最右侧的第6列的数据是类的分数(虽然显示1,但实际上分值是浮点数接近1的)原创 2024-10-05 15:29:40 · 1258 阅读 · 0 评论 -
win10+vs2017+opencv4.5.3+yolov5-5.0
导出后生成的yolov5s.onnx会在yolov5s.pt权重文件所在文件夹下生成的然后下载,最后就是和C++联合使用了。原创 2024-10-05 15:27:00 · 1322 阅读 · 0 评论 -
在谷歌colab运行YOLO系列(重要比在云服务器搭建运行快)
再次重新运行发现可以了,此时即便是workers为8也是可以的,不会超出内存,并且运行速度也很快(比自己的云服务器2核2G的快多了)差不多10分钟能训练一轮,那50轮是500分钟大概(8,9个小时)在Firefox和Chrome中,在colab页面,按Ctrl+Shit+i,打开检查页面(也可以右击鼠标,选择“检查”),并切换到控制台或terminal标签,chrome中为Console。需要注意的是此处在线执行预处理,是比较慢一些的(下次直接在本地预处理,然后将预处理好的文件上传即可)原创 2024-10-05 15:25:53 · 1401 阅读 · 0 评论 -
基于卷积神经网络的磨削平板类零件擦伤检测
还记得读研那会儿刚学习完了卷积神经网络,初步学会了最基础的分类问题,当时也有点python基础,同时对TensorFlow也有点入门了。正好我的课题中有一类缺陷比较难以用传统方法识别判断,就想着用这种方式试试,看看效果咋样,并且那个时候我们实验室就我一个接触这方面的(哈哈有点自我膨胀了),想着整好了说不定也能水一篇文章,不过最后投了几家都没啥结果(现在看来确实太基础了,没啥创新性),就这样也是一直在我的文件夹里吃灰到现在了TensorFlow模型导出到OpenCV调用。原创 2024-09-01 12:34:17 · 709 阅读 · 0 评论 -
DNN学习平台(GoogleNet、SSD、FastRCNN、Yolov3)
还记得上学那会儿刚学完几个深度学习模型的C++简单部署应用,当时特别兴奋,外加那会儿还能自己写界面生成应用程序了,就想着做一个简单的应用把当时学到的几个模型部署都集成到上面,虽然当时写完了,但一直没怎么用,哈哈也一直吃灰到现在了DNN深度学习平台。原创 2024-08-30 21:36:58 · 1191 阅读 · 0 评论 -
LSTM唐诗生成
使用深度网络模型写首歌写个剧本等原理类似模块递归神经网络,升级LSTM带记忆和遗忘的神经网络最后使用LSTM作为核心模块核心框架使用TensorFlow,不用担心GPU,只需要部分文本数据即可(使用部分唐诗数据,使其会做唐诗即可),使用CPU就能跑接下来就是比较有意思的事情了唐诗宋词这些诗人写出来,非常有感觉让计算机学习一下,然后写出来就是学习这些话前后之间的关系,如第一句话说完了,第二句话怎么说第一个词说完了,下一个词说什么比较恰当这时用AI完成这样的古诗。原创 2024-08-27 23:12:11 · 1417 阅读 · 0 评论 -
OpenCV4深度神经网络DNN实战教程
OpenCV DNN模块传统的HAAR级联人脸检测器不可靠到DNN的高可靠各种操作,如何将TensorFlow训练出来的模型导入到,实现很好的调用OpenCVDNN模块可以解决OpenCV4不再是单纯的计算机视觉库,还有深度学习推理库OpenCV4后与神经网络扩展模块在3.3中放到了release版本中旧的教程下线有瑕疵此时已经很成熟了,通过IE加速(推理引擎,7、8倍的效率提升)OpenCV4模型数很多。原创 2024-08-27 23:04:44 · 2228 阅读 · 0 评论 -
证件照背景底色更换工具(深度学习+扣取人像+头发丝级精度)
证件照背景底色更换工具(深度学习+扣取人像+头发丝级精度)引言功能介绍及使用(1)软件包介绍(2)界面功能介绍(3)使用过程1)点击选择按钮,选择某个图片2)抠图模式选择,底色模式选择3)一键更换后,输出结果如下4)随机几个图片抠图换底色后的效果5)自定义底色模式资源链接引言 还记得之前的时候因为某件事需要一张证件照片,按照要求是红底照片,本人之前是有张比较满意的证件照,但其是蓝底的,因为要的比较紧急,再立即去准备好衣服等重新照一张不太现实。 心想进行打印照片的店里的人应该可以更换底色吧,她确实给原创 2022-05-09 16:12:26 · 1672 阅读 · 5 评论 -
视频分析与对象跟踪
视频分析与对象跟踪所用环境所用环境本文使用的环境需要包含OpenCV的扩展模块,故使用的是已经编译好扩展模块的OpenCV版本。原创 2020-11-04 08:25:15 · 618 阅读 · 1 评论 -
win10系统使用Faster-RCNN-TensorFlow-python3-master训练自己的数据集(二)
训练自己的数据集1.建立VOC数据集(1)建立数据集文件结构(2)JPEGImages(3)Annotations(4)ImageSets2.训练数据集(1)下载预训练的VGG16网络模型(2)修改pascal_voc.py(3)修改config.py(4)运行train.py3.测试数据集修改demo.py1.建立VOC数据集参考链接:从零开始制作自己的Pascal VOC数据集.上述参考链接中有标注工具labelimg的下载。(1)建立数据集文件结构建立如下格式的文件结构(仿照标准VOC数据集原创 2020-10-05 16:14:05 · 2472 阅读 · 1 评论 -
win10系统使用Faster-RCNN-TensorFlow-python3-master训练自己的数据集(一)
环境搭建前言1.环境搭建1)win10下安装TensorFlow(1)安装Anaconda(2)新建虚拟环境(3)选择tensorflow版本(4)安装TensorFlow2)安装Faster rcnn框架(1)下载Faster rcnn(2)安装python依赖库(3)编译Faster-RCNN的环境前言本人在win10系统下踩了太多坑,故在此进行归纳总结,光是在win10搭建可以运行的环境就废了很长时间,通过归纳总结,希望以后再遇到此问题时不再彷徨。1.环境搭建参考链接:Windows +Ten原创 2020-10-05 11:14:25 · 2392 阅读 · 1 评论 -
深度神经网络(DNN)之三(使用Faster-RCNN进行对象检测)
Faster-RCNN进行对象检测Faster-RCNN模型下载权重文件及描述文件Faster-RCNN模型下载权重文件及描述文件将下载的描述文件复制到此文件目录下解决无法打开RAW的问题Windows上可以这样办:上https://www.ipaddress.com查一下raw.githubusercontent.com的ipv4地址,比如我现在查到的是199.232.68.133。使用管理员权限打开C:\Windows\System32\drivers\etc\hosts文件原创 2020-09-24 16:05:53 · 1046 阅读 · 0 评论 -
TensorFlow模型导出到OpenCV调用
TensorFlow模型导出到OpenCV调用一级目录一级目录原创 2020-09-15 15:46:58 · 2023 阅读 · 1 评论 -
OpenCV4快速入门
OpenCV4快速入门001-图像读取与显示quickDemo类的定义(头文件)quickDemo类的函数实现002-色彩空间变换(cvtColor)003-图像对象的创建与赋值(m2=m1,clone,copyto)004-图像像素的读写操作(image.at(row, col),image.at(row, col)[0])005-图像像素的算术操作(+,-,multiply,divide)006-trackbar滚动条操作演示-调整图像亮度(add,subtract)007-trackbar滚动条操作演原创 2020-09-15 08:52:14 · 9483 阅读 · 3 评论 -
深度神经网络(DNN)之二(使用SSD进行对象检测)
SSD进行对象检测一级目录一级目录原创 2020-09-07 16:33:57 · 1442 阅读 · 1 评论 -
深度神经网络(DNN)之使用GoogleNet进行图像分类
使用GoogleNet进行图像分类前提环境模型下载本文所用模型图像分类模型介绍部分操作引入头文件用于加载模型的函数计算后台设置具体操作步骤1.加载模型(读取网络信息)2.构建输入3.输入网络并推测得到输出4.解析输出结果完整代码前提环境本文所用环境VS2017+OpenCV4.4+win10模型下载在贾老师的github上有模型的完整文件https://github.com/gloomyfish1998/opencv_tutorial/本文将其下载到D:\OpenCV\project\下本文原创 2020-09-05 08:38:19 · 1977 阅读 · 0 评论