微调OwlVit

本文不生产技术,只做技术的搬运工!!!

前言

        相信大家既然已经点进了这篇文章,说明已经被owl的微调折磨的体无完肤了,尤其是谷歌官方的scenic框架,环境都走不通,作者和大家一样,原地破大防,后来在github闲逛的时候无意间看到了一个仓库,可以实现owl的微调,这里给大家分享一下。

原框架参考链接:https://github.com/sharad5/OWL-ViT-Object-Detection

环境

主要需要transformers、pytorch、wandb这几个库,大家自行安装缺啥补啥

复现

原框架写的有些松散,配置文件一些参数冗余操作不便,作者进行了更改,大家可以直接使用作者的代码替换原有代码

config.yaml

#data:
#  images_path: "/home/project_python/OWL-ViT-Object-Detection/singapore/images/test"
#  annotations_file: "/home/project_python/OWL-ViT-Object-Detection/data/singapore_test.json"
#  num_train_images: 2500
### 训练 Owl-ViT 模型的方法 Owl-ViT 是一种基于 Vision Transformer (ViT) 的多模态模型,主要用于图像检索和视觉-语言任务。以下是关于如何训练 Owl-ViT 模型的相关信息: #### 使用 Hugging Face Transformers 库进行训练 Hugging Face 提供了一个强大的工具集来支持多种深度学习框架之间的无缝切换[^2]。为了训练 Owl-ViT 模型,可以利用 `transformers` 和 `datasets` 库中的功能。 1. **数据准备** 需要准备好用于训练的数据集。这些数据通常由成对的图像及其对应的文本描述组成。可以通过 Hugging Face Datasets API 加载现有的公开数据集或自定义构建自己的数据集。 2. **加载预训练模型** 可以通过以下方式加载 Owl-ViT 基础模型: ```python from transformers import OwlViTProcessor, OwlViTModel processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32") model = OwlViTModel.from_pretrained("google/owlvit-base-patch32") ``` 3. **微调模型** 微调(Fine-Tuning)是一种常见的技术,允许开发者针对特定的任务调整预训练的大规模模型参数。对于 Owl-ViT 来说,可以选择冻结部分网络层并仅优化最后几层权重,或者完全解冻整个架构以便更深入地适配目标领域需求[^1]。 4. **设置训练环境** 利用 PyTorch 或 TensorFlow 构建损失函数与优化器配置文件,并指定 GPU/CPU 设备资源分配情况。下面是一个简单的例子展示如何初始化 AdamW 作为优化算法之一: ```python optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) ``` 5. **执行训练过程** 定义好前向传播计算逻辑之后,在循环迭代过程中不断更新梯度直至达到收敛条件为止。期间还需监控验证集合上的表现指标变化趋势以防止过拟合现象发生。 --- #### Few-Shot 提示方法的应用场景探讨 当面对少量标注样本时,Few-Shot 学习策略显得尤为重要。它能够借助精心设计好的提示模板引导模型快速理解新概念而无需大量重新训练工作量。例如,在处理某些罕见类别识别问题上,我们可能只需要提供几个正面实例即可让系统学会区分该类别的特征属性。 --- #### 微调 vs 提示工程的关系分析 尽管两者都旨在提升性能效果方面有所贡献,但它们实现路径存在本质区别:前者侧重于改变底层神经元连接强度从而适应具体业务诉求;后者则更多依赖高质量输入表述形式激发已有知识储备潜力完成目标任务解决。因此,在实际项目开发当中往往需要综合考虑成本效益比以及时间周期等因素决定采取何种手段更为合适。 ---
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔障阿Q

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值